25 research outputs found
High sensitivity organic inorganic hybrid X-ray detectors with direct transduction and broadband response
X-ray detectors are critical to healthcare diagnostics, cancer therapy and homeland security, with many potential uses limited by system cost and/or detector dimensions. Current X-ray detector sensitivities are limited by the bulk X-ray attenuation of the materials and consequently necessitate thick crystals (~1 mm-1 cm), resulting in rigid structures, high operational voltages and high cost. Here we present a disruptive, flexible, low cost, broadband, and high sensitivity direct X-ray transduction technology produced by embedding high atomic number bismuth oxide nanoparticles in an organic bulk heterojunction. These hybrid detectors demonstrate sensitivities of 1712 µC mGy-1 cm-3 for "soft" X-rays and ~30 and 58 µC mGy-1 cm-3 under 6 and 15 MV "hard" X-rays generated from a medical linear accelerator; strongly competing with the current solid state detectors, all achieved at low bias voltages (-10 V) and low power, enabling detector operation powered by coin cell batteries
High charge-carrier mobilities in blends of poly(triarylamine) and TIPS-pentacene leading to better performing X-ray sensors
A new class of X-ray sensor – in which there is a blend of poly(triarylamine) (PTAA) and 6,13-bis(triisopropylsilylethynyl) (TIPS)-pentacene in the active layer of a diode structure – has been developed. The crystalline pentacene provides a fast route for charge carriers and leads to enhanced performance of the sensor. The first time-of-flight charge-carrier mobility measurement of this blend is reported. The mobility of PTAA and TIPS-pentacene in a 1:25 molar ratio was found to be 2.2 × 10−5 cm2 V−1 s−1 (averaged for field strengths between 3 × 104 and 4 × 105 V cm−1), which is about 17 times higher than that obtained in PTAA over the same range of field strengths. This higher mobility is correlated with a fourfold increase in the X-ray detection sensitivity in the PTAA:TIPS-pentacene devices
High charge-carrier mobilities in blends of poly(triarylamine) and TIPS-pentacene leading to better performing X-ray sensors
A new class of X-ray sensor – in which there is a blend of poly(triarylamine) (PTAA) and 6,13-bis(triisopropylsilylethynyl) (TIPS)-pentacene in the active layer of a diode structure – has been developed. The crystalline pentacene provides a fast route for charge carriers and leads to enhanced performance of the sensor. The first time-of-flight charge-carrier mobility measurement of this blend is reported. The mobility of PTAA and TIPS-pentacene in a 1:25 molar ratio was found to be 2.2 × 10−5 cm2 V−1 s−1 (averaged for field strengths between 3 × 104 and 4 × 105 V cm−1), which is about 17 times higher than that obtained in PTAA over the same range of field strengths. This higher mobility is correlated with a fourfold increase in the X-ray detection sensitivity in the PTAA:TIPS-pentacene devices
Heavy metallic oxide nanoparticles for enhanced sensitivity in semiconducting polymer x-ray detectors
Semiconducting polymers have previously been used as the transduction material in x-ray dosimeters, but these devices have a rather low detection sensitivity because of the low x-ray attenuation efficiency of the organic active layer. Here, we demonstrate a way to overcome this limitation through the introduction of high density nanoparticles having a high atomic number (Z) to increase the x-ray attenuation. Specifically, bismuth oxide (Bi O ) nanoparticles (Z=83 for Bi) are added to a poly(triarylamine) (PTAA) semiconducting polymer in the active layer of an x-ray detector. Scanning electron microscopy (SEM) reveals that the Bi O nanoparticles are reasonably distributed in the PTAA active layer. The reverse bias dc currentvoltage characteristics for PTAABi O diodes (with indium tin oxide (ITO) and Al contacts) have similar leakage currents to ITO/PTAA/Al diodes. Upon irradiation with 17.5keV x-ray beams, a PTAA device containing 60wt% Bi O nanoparticles demonstrates a sensitivity increase of approximately 2.5 times compared to the plain PTAA sensor. These results indicate that the addition of high-Z nanoparticles improves the performance of the dosimeters by increasing the x-ray stopping power of the active volume of the diode. Because the Bi O has a high density, it can be used very efficiently, achieving a high weight fraction with a low volume fraction of nanoparticles. The mechanical flexibility of the polymer is not sacrificed when the inorganic nanoparticles are incorporated. © 2012 IOP Publishing Ltd
Flexible radiation dosimeters incorporating semiconducting polymer thick films
Flexible radiation dosimeters have been produced incorporating thick films (>1 μm) of the semiconducting polymer poly([9,9-dioctylfluorenyl-2,7-diyl]-co-bithiophene). Diode structures produced on aluminium-metallised poly(imide) substrates, and with gold top contacts, have been examined with respect to their electrical properties. The results suggest that a Schottky conduction mechanism occurs in the reverse biased diode, with a barrier to charge injection at the aluminium electrode. Optical absorption/emission spectra reveal a band gap of 2.48 eV for the polymer. The diodes have been used for direct charge detection of 17 keV X-rays, generated by a molybdenum source. Using operating voltages of -10 and -50 V respectively, sensitivities of 54 and 158 nC/mGy/cm3 have been achieved. Increasing the operating voltage shows that the diodes are stable up to approximately -200 V without significant increase in the dark current of the device (<0.2 nA)