136 research outputs found
Variational semi-blind sparse deconvolution with orthogonal kernel bases and its application to MRFM
We present a variational Bayesian method of joint image reconstruction and point spread function (PSF) estimation when the PSF of the imaging device is only partially known. To solve this semi-blind deconvolution problem, prior distributions are specified for the PSF and the 3D image. Joint image reconstruction and PSF estimation is then performed within a Bayesian framework, using a variational algorithm to estimate the posterior distribution. The image prior distribution imposes an explicit atomic measure that corresponds to image sparsity. Importantly, the proposed Bayesian deconvolution algorithm does not require hand tuning. Simulation results clearly demonstrate that the semi-blind deconvolution algorithm compares favorably with previous Markov chain Monte Carlo (MCMC) version of myopic sparse reconstruction. It significantly outperforms mismatched non-blind algorithms that rely on the assumption of the perfect knowledge of the PSF. The algorithm is illustrated on real data from magnetic resonance force microscopy (MRFM)
Fault-Tolerant Aggregation: Flow-Updating Meets Mass-Distribution
Flow-Updating (FU) is a fault-tolerant technique that has proved to be
efficient in practice for the distributed computation of aggregate functions in
communication networks where individual processors do not have access to global
information. Previous distributed aggregation protocols, based on repeated
sharing of input values (or mass) among processors, sometimes called
Mass-Distribution (MD) protocols, are not resilient to communication failures
(or message loss) because such failures yield a loss of mass. In this paper, we
present a protocol which we call Mass-Distribution with Flow-Updating (MDFU).
We obtain MDFU by applying FU techniques to classic MD. We analyze the
convergence time of MDFU showing that stochastic message loss produces low
overhead. This is the first convergence proof of an FU-based algorithm. We
evaluate MDFU experimentally, comparing it with previous MD and FU protocols,
and verifying the behavior predicted by the analysis. Finally, given that MDFU
incurs a fixed deviation proportional to the message-loss rate, we adjust the
accuracy of MDFU heuristically in a new protocol called MDFU with Linear
Prediction (MDFU-LP). The evaluation shows that both MDFU and MDFU-LP behave
very well in practice, even under high rates of message loss and even changing
the input values dynamically.Comment: 18 pages, 5 figures, To appear in OPODIS 201
An objective based classification of aggregation techniques for wireless sensor networks
Wireless Sensor Networks have gained immense popularity in recent years due to their ever increasing capabilities and wide range of critical applications. A huge body of research efforts has been dedicated to find ways to utilize limited resources of these sensor nodes in an efficient manner. One of the common ways to minimize energy consumption has been aggregation of input data. We note that every aggregation technique has an improvement objective to achieve with respect to the output it produces. Each technique is designed to achieve some target e.g. reduce data size, minimize transmission energy, enhance accuracy etc. This paper presents a comprehensive survey of aggregation techniques that can be used in distributed manner to improve lifetime and energy conservation of wireless sensor networks. Main contribution of this work is proposal of a novel classification of such techniques based on the type of improvement they offer when applied to WSNs. Due to the existence of a myriad of definitions of aggregation, we first review the meaning of term aggregation that can be applied to WSN. The concept is then associated with the proposed classes. Each class of techniques is divided into a number of subclasses and a brief literature review of related work in WSN for each of these is also presented
Fault-tolerant aggregation: Flow-Updating meets Mass-Distribution
Flow-Updating (FU) is a fault-tolerant technique that has proved to be efficient in practice for the distributed computation of aggregate functions in communication networks where individual processors do not have access to global information. Previous distributed aggregation protocols, based on repeated sharing of input values (or mass) among processors, sometimes called Mass-Distribution (MD) protocols, are not resilient to communication failures (or message loss) because such failures yield a loss of mass. In this paper, we present a protocol which we call Mass-Distribution with Flow-Updating (MDFU). We obtain MDFU by applying FU techniques to classic MD. We analyze the convergence time of MDFU showing that stochastic message loss produces low overhead. This is the first convergence proof of an FU-based algorithm. We evaluate MDFU experimentally, comparing it with previous MD and FU protocols, and verifying the behavior predicted by the analysis. Finally, given that MDFU incurs a fixed deviation proportional to the message-loss rate, we adjust the accuracy of MDFU heuristically in a new protocol called MDFU with Linear Prediction (MDFU-LP). The evaluation shows that both MDFU and MDFU-LP behave very well in practice, even under high rates of message loss and even changing the input values dynamically.- A preliminary version of this work appeared in [2]. This work was partially supported by the National Science Foundation (CNS-1408782, IIS-1247750); the National Institutes of Health (CA198952-01); EMC, Inc.; Pace University Seidenberg School of CSIS; and by Project "Coral - Sustainable Ocean Exploitation: Tools and Sensors/NORTE-01-0145-FEDER-000036" financed by the North Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, and through the European Regional Development Fund (ERDF).info:eu-repo/semantics/publishedVersio
- …