146 research outputs found

    Aerosol characteristics and particle production in the upper troposphere over the Amazon Basin

    No full text
    Airborne observations over the Amazon Basin showed high aerosol particle concentrations in the upper troposphere (UT) between 8 and 15 km altitude, with number densities (normalized to standard temperature and pressure) often exceeding those in the planetary boundary layer (PBL) by 1 or 2 orders of magnitude. The measurements were made during the German–Brazilian cooperative aircraft campaign ACRIDICON–CHUVA, where ACRIDICON stands for "Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems" and CHUVA is the acronym for "Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud Resolving Modeling and to the GPM (global precipitation measurement)", on the German High Altitude and Long Range Research Aircraft (HALO). The campaign took place in September–October 2014, with the objective of studying tropical deep convective clouds over the Amazon rainforest and their interactions with atmospheric trace gases, aerosol particles, and atmospheric radiation. Aerosol enhancements were observed consistently on all flights during which the UT was probed, using several aerosol metrics, including condensation nuclei (CN) and cloud condensation nuclei (CCN) number concentrations and chemical species mass concentrations. The UT particles differed sharply in their chemical composition and size distribution from those in the PBL, ruling out convective transport of combustion-derived particles from the boundary layer (BL) as a source. The air in the immediate outflow of deep convective clouds was depleted of aerosol particles, whereas strongly enhanced number concentrations of small particles ( 90 nm) particles in the UT, which consisted mostly of organic matter and nitrate and were very effective CCN. Our findings suggest a conceptual model, where production of new aerosol particles takes place in the continental UT from biogenic volatile organic material brought up by deep convection and converted to condensable species in the UT. Subsequently, downward mixing and transport of upper tropospheric aerosol can be a source of particles to the PBL, where they increase in size by the condensation of biogenic volatile organic compound (BVOC) oxidation products. This may be an important source of aerosol particles for the Amazonian PBL, where aerosol nucleation and new particle formation have not been observed. We propose that this may have been the dominant process supplying secondary aerosol particles in the pristine atmosphere, making clouds the dominant control of both removal and production of atmospheric particles.© Author(s) 201

    Chemical composition and source analysis of carbonaceous aerosol particles at a mountaintop site in central Sweden

    No full text
    The chemical composition of atmospheric particulate matter at Mt. Åreskutan, a mountaintop site in central Sweden, was analysed with a focus on its carbonaceous content. Filter samples taken during the Cloud and Aerosol Experiment at Åre (CAEsAR 2014) were analysed by means of a thermo-optical method and ion chromatography. Additionally, the particle light absorption and particle number size distribution measurements for the entire campaign were added to the analysis. Mean airborne concentrations of organic and elemental carbon during CAEsAR 2014 were OC = 0.85 0.80 g m and EC = 0.06 0.06 g m, respectively. Elemental to organic carbon ratios varied between EC/OC = 0.02 and 0.19. During the study a large wildfire occurred in Västmanland, Sweden, with the plume reaching our study site. This led to significant increases in OC and EC concentrations (OC = 3.04 0.03 g m and EC = 0.24 0.00 g m). The mean mass-specific absorption coefficient observed during the campaign was = 9.17.3 mg (at wavelength = 637 nm). In comparison to similarly remote European sites, Mt. Åreskutan experienced significantly lower carbonaceous aerosol loadings with a clear dominance of organic carbon. A mass closure study revealed a missing chemical mass fraction that likely originated from mineral dust. Potential regional source contributions of the carbonaceous aerosol were investigated using modelled air mass back trajectories. This source apportionment pointed to a correlation between high EC concentrations and air originating from continental Europe. Particles rich in organic carbon most often arrived from highly vegetated continental areas. However, marine regions were also a source of these aerosol particles. The source contributions derived during this study were compared to emission inventories of an Earth system model. This comparison highlighted a lack of OC and EC point-sources in the model’s emission inventory which could potentially lead to an underestimation of the carbonaceous aerosol reaching Mt. Åreskutan in the simulation of this Earth system model.© 2017 Informa UK Limite

    Analysis of Meteoroid Ablation Based on Plasma Wind-tunnel Experiments, Surface Characterization, and Numerical Simulations

    No full text
    Meteoroids largely disintegrate during their entry into the atmosphere, contributing significantly to the input of cosmic material to Earth. Yet, their atmospheric entry is not well understood. Experimental studies on meteoroid material degradation in high-enthalpy facilities are scarce and when the material is recovered after testing, it rarely provides sufficient quantitative data for the validation of simulation tools. In this work, we investigate the thermo-chemical degradation mechanism of a meteorite in a high-enthalpy ground facility able to reproduce atmospheric entry conditions. A testing methodology involving measurement techniques previously used for the characterization of thermal protection systems for spacecraft is adapted for the investigation of ablation of alkali basalt (employed here as meteorite analog) and ordinary chondrite samples. Both materials are exposed to a cold-wall stagnation point heat flux of 1.2 MW m−2. Numerous local pockets that formed on the surface of the samples by the emergence of gas bubbles reveal the frothing phenomenon characteristic of material degradation. Time-resolved optical emission spectroscopy data of ablated species allow us to identify the main radiating atoms and ions of potassium, calcium, magnesium, and iron. Surface temperature measurements provide maximum values of 2280 K for the basalt and 2360 K for the chondrite samples. We also develop a material response model by solving the heat conduction equation and accounting for evaporation and oxidation reaction processes in a 1D Cartesian domain. The simulation results are in good agreement with the data collected during the experiments, highlighting the importance of iron oxidation to the material degradation.© 2019 The American Astronomical Societ

    Perspectives on the Future of Ice Nucleation Research: Research Needs and Unanswered Questions Identified from Two International Workshops

    No full text
    There has been increasing interest in ice nucleation research in the last decade. To identify important gaps in our knowledge of ice nucleation processes and their impacts, two international workshops on ice nucleation were held in Vienna, Austria in 2015 and 2016. Experts from these workshops identified the following research needs: (1) uncovering the molecular identity of active sites for ice nucleation; (2) the importance of modeling for the understanding of heterogeneous ice nucleation; (3) identifying and quantifying contributions of biological ice nuclei from natural and managed environments; (4) examining the role of aging in ice nuclei; (5) conducting targeted sampling campaigns in clouds; and (6) designing lab and field experiments to increase our understanding of the role of ice-nucleating particles in the atmosphere. Interdisciplinary teams of scientists should work together to establish and maintain a common, unified language for ice nucleation research. A number of commercial applications benefit from ice nucleation research, including the production of artificial snow, the freezing and preservation of water-containing food products, and the potential modulation of weather. Additional work is needed to increase our understanding of ice nucleation processes and potential impacts on precipitation, water availability, climate change, crop health, and feedback cycles.© 2017 by the author

    Data from: MHC variability in an isolated wolf population in Italy

    No full text
    Small, isolated populations may experience increased extinction risk due to reduced genetic variability at important functional genes, thus decreasing the population's adaptive potential. The major histocompatibility complex (MHC), a key immunological gene cluster, usually shows high variability maintained by positive or balancing selection in response to challenges by pathogens. Here we investigated for the first time, the variability of 3 MHC class II genes (DRB1, DQA1, and DQB1) in 94 samples collected from Italian wolves. The Italian wolf population has been long isolated south of the Alps and is presently recovering from a recent bottleneck that decreased the population to less than 100 individuals. Despite the bottleneck, Italian wolves show remarkable MHC variability with 6–9 alleles per locus, including 2 recently described alleles at DRB1. MHC sequences show signatures of historical selective pressures (high d N/d S ratio, ω > 1.74) but no evidence of ongoing selection. Variation at the MHC genes and 12 background microsatellite loci were not apparently affected by the recent bottleneck. Although MHC alleles of domestic dog origin were detected in 8 genetically admixed individuals, these alleles were rare or absent in nonadmixed wolves. Thus, despite known hybridization events between domestic dogs and Italian wolves, the Italian wolf population does not appear affected by deep introgression of domestic dog MHC alleles

    Data from: Choosy wolves? Heterozygote advantage but no evidence of MHC-based disassortative mating

    No full text
    A variety of nonrandom mate choice strategies, including disassortative mating, are used by vertebrate species to avoid inbreeding, maintain heterozygosity and increase fitness. Disassortative mating may be mediated by the major histocompatibility complex (MHC), an important gene cluster controlling immune responses to pathogens. We investigated the patterns of mate choice in 26 wild-living breeding pairs of gray wolf (Canis lupus) that were identified through noninvasive genetic methods and genotyped at 3 MHC class II and 12 autosomal microsatellite (STR) loci. We tested for deviations from random mating and evaluated the covariance of genetic variables at functional and STR markers with fitness proxies deduced from pedigree reconstructions. Results did not show evidences of MHC-based disassortative mating. Rather we found a higher peptide similarity between mates at MHC loci as compared with random expectations. Fitness values were positively correlated with heterozygosity of the breeders at both MHC and STR loci, whereas they decreased with relatedness at STRs. These findings may indicate fitness advantages for breeders that, while avoiding highly related mates, are more similar at the MHC and have high levels of heterozygosity overall. Such a pattern of MHC-assortative mating may reflect local coadaptation of the breeders, while a reduction in genetic diversity may be balanced by heterozygote advantages

    Genetic investigation of Italian domestic pigeons increases knowledge about the long-bred history of Columba livia (Aves: Columbidae)

    No full text
    In this study, we aimed to characterise the genetic diversity of Italian pigeon breeds and describe the relationships among them and other European lineages, conjecturing which processes have led to actual breeds. We analysed the eight most diffused Italian pigeon breeds in addition to 11 foreign lineages that could have shared common ancestors or have been used in the creation of the Italian breeds. We analysed 12 autosomal microsatellite loci in 427 samples collected from 19 breeds belonging to six main groups of domestic pigeons (tumblers and highflyers, structure, owls, wattle, utility and hen). Genetic variability did not differ considerably among breeds, with an average observed heterozygosity (HO) of 0.550 ± 0.072 (max = 0.661 in breed Sottobanca; min = 0.411 in breed Frillback). The 21.34% of total genetic variation found was partitioned among breeds. Italian pigeon breeds were assigned coherently to their respective groups of origin. The analysis supports the origin of homing pigeons from English Carrier and the existence of a close relationship between Old Dutch Capuchine and Italian Owl. Despite the differences in body size, pigeons of the breeds belonging to the hen group are genetically very similar. The sub-populations recognised by breeders inside Italian Owl and Triganino are not genetically supported and their identification as new breeds ought not to be yet proposed, although they are morphologically distinguishable. Consequently, it could also be discussed how the genetic characterisation of domestic lineages could give useful information in breeding and selection processes

    Additional file 1 of Influence of biofilm growth age, media, antibiotic concentration and exposure time on Staphylococcus aureus and Pseudomonas aeruginosa biofilm removal in vitro

    No full text
    Additional file 1: Figure S1. S. aureus biofilm formation on CBD. After 24 or 72 h of growth, biofilms were removed from the pegs, transferred into the recovery plate and harvested by sonication. Six random wells of each row were selected for CFU count, in total 48 wells per plate. The number of CFUs per peg were different under different conditions. Generally 3 days incubation resulted in more CFUs per peg. Figure S2. P. aeruginosa PA14 biofilm formation on CBD. After 24 or 72 h of growth, biofilms were removed from the pegs, transferred into the recovery plate and harvested by sonication. Six random wells of each row were selected for CFU count, in total 48 wells per plate. The number of CFUs per peg were different under different conditions. Generally 3 days incubation resulted in more CFUs per peg. Figure S3. Flow diagram of the MBEC assay
    corecore