16 research outputs found

    Multidrug-Resistant Tuberculosis of the Ankle: Case Report

    No full text

    Fatty diabetic lung: functional impairment in a model of metabolic syndrome

    No full text
    The Zucker diabetic fatty (ZDF fa/fa) rat with genetic leptin insensitivity develops obesity and Type 2 diabetes mellitus (T2DM) with age accompanied by hyperplastic changes in the distal lung (Am J Physiol Lung Cell Mol Physiol 298: L392–L403, 2010). To determine the functional consequences of structural changes, we developed a rebreathing (RB) technique to simultaneously measure lung volume, pulmonary blood flow, lung diffusing capacity (Dl(CO)), membrane diffusing capacity (Dm(CO)), pulmonary capillary blood volume (Vc), and septal tissue volume in anesthetized tracheostomized male ZDF fa/fa and matched lean (+/+) control animals at 4, 8, and 12 mo of age. Results obtained by RB technique were compared with that measured by a single-breath (SB) technique and to that expected in a wide range of species. In fa/fa animals compared with +/+, lung volumes and compliance were 13–35% lower at different ages, and the normal age-related increase in lung compliance was no longer evident. Mean pulmonary blood flow declined with age in fa/fa but not in +/+ animals. Dl(CO) measured at a given pulmonary blood flow was 20–43% lower at different ages due to reductions in both Dm(CO) and Vc. Septal tissue volume was also reduced in older fa/fa rats. We conclude that obese rats with T2DM develop significant restrictive pulmonary defects with diffusion impairment in a pattern similar to that previously reported in obese human subjects with T2DM. Functional impairment became exaggerated with age and duration of T2DM. In both fa/fa and +/+ animals, Dl(CO) measured by RB was systematically higher than by SB technique whereas lung volume was similar, a finding consistent with heterogeneous distribution of ventilation in the rat lung

    Fatty diabetic lung: altered alveolar structure and surfactant protein expression

    No full text
    Pulmonary dysfunction develops in type 2 diabetes mellitus (T2DM) in direct correlation with glycemia and is exacerbated by obesity; however, the associated structural derangement has not been quantified. We studied lungs from obese diabetic (fa/fa) male Zucker diabetic fatty (ZDF) rats at 4, 12, and 36 wk of age, before and after onset of T2DM, compared with lean nondiabetic (+/+) rats. Surfactant proteins A and C (SP-A and SP-C) immunoexpression in lung tissue was quantified at ages 14 and 18 wk, after the onset of T2DM. In fa/fa animals, lung volume was normal despite obesity. Numerous lipid droplets were visible within alveolar interstitium, lipofibroblasts, and macrophages, particularly in subpleural regions. Total triglyceride content was 136% higher. By 12 wk, septum volume was 21% higher, and alveolar duct volume was 36% lower. Capillary basement membrane was 29% thicker. Volume of lamellar bodies was 45% higher. By age 36 wk, volumes of interstitial collagen fibers, cells, and matrix were respectively 32, 25, and 80% higher, and capillary blood volume was 18% lower. ZDF rats exhibited a strain-specific increase in resistance of the air-blood diffusion barrier with age, which was exaggerated in fa/fa lungs compared with +/+ lungs. In fa/fa lungs, SP-A and SP-C expression were elevated at age 14–18 wk; the normal age-related increase in SP-A expression was accelerated, whereas SP-C expression declined with age. Thus lungs from obese T2DM animals develop many qualitatively similar changes as in type 1 diabetes mellitus but with extensive lipid deposition, altered alveolar type 2 cell ultrastructure, and surfactant protein expression patterns that suggest additive effects of hyperglycemia and lipotoxicity

    Asthma and body weight change: a 20-year prospective community study of young adults

    No full text
    OBJECTIVE: There is increasing evidence for an association between asthma and body weight change. The objectives of these analyses were to examine the temporal relationships of this association and to explore the role of childhood depression as an explanatory factor. METHODS: Data were derived from six subsequent semistructured interviews on health habits and health conditions from a single-age community study of 591 young adults followed up between ages 20 and 40 years. RESULTS: Cross-sectionally (over the whole study period), asthma was significantly associated with obesity (odds ratio=3.9 [95% confidence interval 1.2, 12.2]). Multivariate longitudinal analyses revealed that asthma was associated with increased later weight gain and later obesity among women after controlling for potentially confounding variables, whereas weight gain and obesity were not associated with later asthma. A secondary analysis showed that depressive symptoms during childhood were associated with adult obesity and asthma, partially explaining the asthma-obesity comorbidity. CONCLUSION: This study encourages further research on mechanisms underlying the asthma-obesity comorbidity, particularly on shared psychosocial factors operating during critical periods in childhood and adolescence that may influence the development and persistence of both obesity and asthma during adulthood
    corecore