26 research outputs found

    Neural effects of muscle stretching on the spinal reflexes in multiple lower-limb muscles

    Get PDF
    While previous studies have shown that muscle stretching suppresses monosynaptic spinal reflex excitability in stretched muscles, its effects on non-stretched muscles is still largely unknown. The purpose of this study was to examine the effects of muscle stretching on monosynaptic spinal reflex in non-stretched muscles. Ten healthy male subjects participated in this study. Muscle stretching of the right triceps surae muscle was performed using a motor torque device for 1 minute. Three different dorsiflexion torques (at approximately 5, 10, and 15 Nm) were applied during muscle stretching. Spinal reflexes evoked by transcutaneous spinal cord stimulation were recorded in both the lower-limb muscles before, during, and at 0 and 5 min following muscle stretching. The amplitudes of the spinal reflexes in both the stretched and non-stretched muscles in the right (ipsilateral) leg were smaller during stretching compared to before, and at 0 and 5 min after stretching. Furthermore, the degree of reduction in the amplitude of the spinal reflexes in the right (ipsilateral) leg muscles increased significantly as the dorsiflexion torque (i.e., stretching of the right triceps surae muscles) increased. In contrast, reduction in the amplitude of the spinal reflexes with increasing dorsiflexion torque was not seen in the left (contralateral) leg muscles. Our results clearly indicate that muscle stretching has inhibitory effects on monosynaptic spinal reflexes, not only in stretched muscles, but also in non-stretched muscles of the ipsilateral leg

    メディア統合無線アクセスアーキテクチャに関する基礎研究

    Get PDF
    University of Tokyo (東京大学

    Generation of High-Purity Millimeter-Wave Orbital Angular Momentum Modes Using Horn Antenna: Theory and Implementation

    Full text link
    Twisted electromagnetic waves, of which the helical phase front is called orbital angular momentum (OAM), have been recently explored for quantum information, high speed communication and radar detections. In this context, generation of high purity waves carrying OAM is of great significance and challenge from low frequency band to optical area. Here, a novel strategy of mode combination method is proposed to generate twisted waves with arbitrary order of OAM index. The higher order mode of a circular horn antenna is used to generate the twisted waves with quite high purity. The proposed strategy is verified with theoretical analysis, numerical simulation and experiments. A circular horn antenna operating at millimeter wave band is designed, fabricated, and measured. Two twisted waves with OAM index of l=+1 and l=-1 with a mode purity as high as 87% are obtained. Compared with the other OAM antennas, the antenna proposed here owns a high antenna gain (over 12 dBi) and wide operating bandwidth (over 15%). The high mode purity, high antenna gain and wide operating band make the antenna suitable for the twisted-wave applications, not only in the microwave and millimeter wave band, but also in the terahertz band.Comment: 18 pages, 9 figure

    Neural effects of muscle stretching on the spinal reflexes in multiple lower-limb muscles.

    No full text
    While previous studies have shown that muscle stretching suppresses monosynaptic spinal reflex excitability in stretched muscles, its effects on non-stretched muscles is still largely unknown. The purpose of this study was to examine the effects of muscle stretching on monosynaptic spinal reflex in non-stretched muscles. Ten healthy male subjects participated in this study. Muscle stretching of the right triceps surae muscle was performed using a motor torque device for 1 minute. Three different dorsiflexion torques (at approximately 5, 10, and 15 Nm) were applied during muscle stretching. Spinal reflexes evoked by transcutaneous spinal cord stimulation were recorded in both the lower-limb muscles before, during, and at 0 and 5 min following muscle stretching. The amplitudes of the spinal reflexes in both the stretched and non-stretched muscles in the right (ipsilateral) leg were smaller during stretching compared to before, and at 0 and 5 min after stretching. Furthermore, the degree of reduction in the amplitude of the spinal reflexes in the right (ipsilateral) leg muscles increased significantly as the dorsiflexion torque (i.e., stretching of the right triceps surae muscles) increased. In contrast, reduction in the amplitude of the spinal reflexes with increasing dorsiflexion torque was not seen in the left (contralateral) leg muscles. Our results clearly indicate that muscle stretching has inhibitory effects on monosynaptic spinal reflexes, not only in stretched muscles, but also in non-stretched muscles of the ipsilateral leg

    Responses evoked by double pulse stimulation.

    No full text
    <p>(A) Representative data from a single subject. Each sweep represents averaged waveform of 12 responses to double pulse stimulation (50-ms time interval) measured in the rTA, rSol, rMG, rVM, rBF, lTA, lSol, and lBF muscles. (B) Averaged group data (n = 10) of peak-to-peak amplitudes (mV) of the responses to the first and second stimulations. Each circle represents an individual data point. Paired t-test revealed significant differences in the group averages between the first and second responses in all of the recorded muscles. **, p<0.01; ***, p<0.001. Abbreviation: rTA, right tibialis anterior; rSOL, right soleus; rMG, right medial gastrocnemius; rVM, right vastus medialis; rBF, right biceps femoris; lTA, left tibialis anterior; lSOL, left soleus; lBF, left biceps femoris.</p
    corecore