76 research outputs found

    Analysis of the generation of photon pairs in periodically poled lithium niobate

    Full text link
    The process of spontaneous parametric down-conversion (SPDC) in nonlinear crystals makes it fairly easy to generate entangled photon states. It has been known for some time that the conversion efficiency can be improved by employing quasi-phase-matching in periodically poled crystals. Using two single-photon detectors, we have analyzed the photon pairs generated by SPDC in a periodically poled lithium niobate crystal pumped by a femtosecond laser. Several parameters could be varied in our setup, allowing us to obtain data in close agreement with both thermal and Poissonian photon-pair distributions.Comment: 4 pages, 4 figures, uses ws-procs10x7.cls; v2: Sign in equation (5) correcte

    Ultrabright narrow-band telecom two-photon source for long-distance quantum communication

    Full text link
    We demonstrate an ultrabright narrow-band two-photon source at the 1.5 -\mu m telecom wavelength for long-distance quantum communication. By utilizing a bow-tie cavity, we obtain a cavity enhancement factor of 4.06×1044.06\times 10^4. Our measurement of the second-order correlation function G(2)(τ)G^{(2)} ({\tau}) reveals that the linewidth of 2.42.4 MHz has been hitherto unachieved in the 1.5 -\mu m telecom band. This two-photon source is useful for obtaining a high absorption probability close to unity by quantum memories set inside quantum repeater nodes. Furthermore, to the best of our knowledge, the observed spectral brightness of 3.94×1053.94\times 10^5 pairs/(s\cdotMHz\cdotmW) is also the highest reported over all wavelengths.Comment: 11 pages, 4 figures, 2 table

    On the efficiency of quantum lithography

    Full text link
    Quantum lithography promises, in principle, unlimited feature resolution, independent of wavelength. However, in the literature at least two different theoretical descriptions of quantum lithography exist. They differ in to which extent they predict that the photons retain spatial correlation from generation to the absorption, and while both predict the same feature size, they differ vastly in predicting how efficiently a quantum lithographic pattern can be exposed. Until recently, essentially all experiments reported have been performed in such a way that it is difficult to distinguish between the two theoretical explanations. However, last year an experiment was performed which gives different outcomes for the two theories. We comment on the experiment and show that the model that fits the data unfortunately indicates that the trade-off between resolution and efficiency in quantum lithography is very unfavourable.Comment: 19 pages, extended version including a thorough mathematical derivatio

    Quantum receiver beyond the standard quantum limit of coherent optical communication

    Full text link
    The most efficient modern optical communication is known as coherent communication and its standard quantum limit (SQL) is almost reachable with current technology. Though it has been predicted for a long time that this SQL could be overcome via quantum mechanically optimized receivers, such a performance has not been experimentally realized so far. Here we demonstrate the first unconditional evidence surpassing the SQL of coherent optical communication. We implement a quantum receiver with a simple linear optics configuration and achieve more than 90% of the total detection efficiency of the system. Such an efficient quantum receiver will provide a new way of extending the distance of amplification-free channels, as well as of realizing quantum information protocols based on coherent states and the loophole-free test of quantum mechanics.Comment: 5 pages, 3 figure

    On the distribution of 1550-nm photon pairs efficiently generated using a periodically poled lithium niobate waveguide

    Full text link
    We report on the generation of photon pairs in the 1550-nm band suitable for long-distance fiber-optic quantum key distribution. The photon pairs were generated in a periodically poled lithium niobate waveguide with a high conversion-efficiency. Using a pulsed semiconductor laser with a pulse rate of 800 kHz and a maximum average pump power of 50 muW, we obtained a coincidence rate of 600 s^-1. Our measurements are in agreement with a Poissonian photon-pair distribution, as is expected from a comparison of the coherence time of the pump and of the detected photons. An average of 0.9 photon pairs per pulse was obtained.Comment: 12 pages, 3 figure

    Quantum limits on phase-shift detection using multimode interferometers

    Get PDF
    Fundamental phase-shift detection properties of optical multimode interferometers are analyzed. Limits on perfectly distinguishable phase shifts are derived for general quantum states of a given average energy. In contrast to earlier work, the limits are found to be independent of the number of interfering modes. However, the reported bounds are consistent with the Heisenberg limit. A short discussion on the concept of well-defined relative phase is also included.Comment: 6 pages, 3 figures, REVTeX, uses epsf.st

    SARS-CoV-2 spike receptor-binding domain is internalized and promotes protein ISGylation in human induced pluripotent stem cell-derived cardiomyocytes

    Get PDF
    Although an increased risk of myocarditis has been observed after vaccination with mRNA encoding severe acute respiratory syndrome coronavirus 2 spike protein, its underlying mechanism has not been elucidated. This study investigated the direct effects of spike receptor-binding domain (S-RBD) on human cardiomyocytes differentiated from induced pluripotent stem cells (iPSC-CMs). Immunostaining experiments using ACE2 wild-type (WT) and knockout (KO) iPSC-CMs treated with purified S-RBD demonstrated that S-RBD was bound to ACE2 and internalized into the subcellular space in the iPSC-CMs, depending on ACE2. Immunostaining combined with live cell imaging using a recombinant S-RBD fused to the superfolder GFP (S-RBD-sfGFP) demonstrated that S-RBD was bound to the cell membrane, co-localized with RAB5A, and then delivered from the endosomes to the lysosomes in iPSC-CMs. Quantitative PCR array analysis followed by single cell RNA sequence analysis clarified that S-RBD-sfGFP treatment significantly upregulated the NF-kβ pathway-related gene (CXCL1) in the differentiated non-cardiomyocytes, while upregulated interferon (IFN)-responsive genes (IFI6, ISG15, and IFITM3) in the matured cardiomyocytes. S-RBD-sfGFP treatment promoted protein ISGylation, an ISG15-mediated post-translational modification in ACE2-WT-iPSC-CMs, which was suppressed in ACE2-KO-iPSC-CMs. Our experimental study demonstrates that S-RBD is internalized through the endolysosomal pathway, which upregulates IFN-responsive genes and promotes ISGylation in the iPSC-CMs.Okuno S., Higo S., Kondo T., et al. SARS-CoV-2 spike receptor-binding domain is internalized and promotes protein ISGylation in human induced pluripotent stem cell-derived cardiomyocytes. Scientific Reports 13, 21397 (2023); https://doi.org/10.1038/s41598-023-48084-7
    corecore