Quantum lithography promises, in principle, unlimited feature resolution,
independent of wavelength. However, in the literature at least two different
theoretical descriptions of quantum lithography exist. They differ in to which
extent they predict that the photons retain spatial correlation from generation
to the absorption, and while both predict the same feature size, they differ
vastly in predicting how efficiently a quantum lithographic pattern can be
exposed.
Until recently, essentially all experiments reported have been performed in
such a way that it is difficult to distinguish between the two theoretical
explanations. However, last year an experiment was performed which gives
different outcomes for the two theories. We comment on the experiment and show
that the model that fits the data unfortunately indicates that the trade-off
between resolution and efficiency in quantum lithography is very unfavourable.Comment: 19 pages, extended version including a thorough mathematical
derivatio