74 research outputs found

    Influence of poly-N-acetylglucosamine in the extracellular matrix on N-chlorotaurine mediated killing of Staphylococcus epidermidis

    Get PDF
    N–chlorotaurine (NCT) has recently been shown to have bactericidal activity against bacterial biofilm on metal discs (Coraca-Huber et al., 2014). In a biofilm, Staphylococcus epidermidis polymerizes poly-N-acetylglucosamine (PNAG) to form an extracellular matrix (ECM). Pseudomonas aeruginosa does not express this PNAG and has been shown to be highly susceptible to NCT. We compared the action of NCT on S. epidermidis 1457, a PNAG positive strain (SE1457) and S. epidermidis 1457- M10 an isogenic PNAG negative mutant (SE1457 M10). NCT-mediated killing was more effective and quicker on the PNAG negative strain SE1457 M10. Bacteria hidden in biofilms for prolonged periods of time were generally more susceptible than freshly formed biofilms. The differences in NCT-mediated killing might not be direct effects since NCT did not react with the monomeric N-acetylglucosamine, but might be explained by denser growth in the PNAG-containing biofilm produced by the wild type strain, which results in delayed penetration of NCT. The higher susceptibility of older biofilms to NCTmediated killing could be explained by more pronounced 3D architecture and subsequent larger surface area for interactions with NCT

    Comprehensive characterization of the prostate tumor microenvironment identifies CXCR4/CXCL12 crosstalk as a novel antiangiogenic therapeutic target in prostate cancer

    Get PDF
    Background: Crosstalk between neoplastic and stromal cells fosters prostate cancer (PCa) progression and dissemination. Insight in cell-to-cell communication networks provides new therapeutic avenues to mold processes that contribute to PCa tumor microenvironment (TME) alterations. Here we performed a detailed characterization of PCa tumor endothelial cells (TEC) to delineate intercellular crosstalk between TEC and the PCa TME. Methods: TEC isolated from 67 fresh radical prostatectomy (RP) specimens underwent multi-omic ex vivo characterization as well as orthogonal validation of both TEC functions and key markers by immunohistochemistry (IHC) and immunofluorescence (IF). To identify cell-cell interaction targets in TEC, we performed single-cell RNA sequencing (scRNA-seq) in four PCa patients who underwent a RP to catalogue cellular TME composition. Targets were cross-validated using IHC, publicly available datasets, cell culture expriments as well as a PCa xenograft mouse model. Results: Compared to adjacent normal endothelial cells (NEC) bulk RNA-seq analysis revealed upregulation of genes associated with tumor vasculature, collagen modification and extracellular matrix remodeling in TEC. PTGIR, PLAC9, CXCL12 and VDR were identified as TEC markers and confirmed by IF and IHC in an independent patient cohort. By scRNA-seq we identified 27 cell (sub)types, including endothelial cells (EC) with arterial, venous and immature signatures, as well as angiogenic tip EC. A focused molecular analysis revealed that arterial TEC displayed highest CXCL12 mRNA expression levels when compared to all other TME cell (sub)populations and showed a negative prognostic role. Receptor-ligand interaction analysis predicted interactions between arterial TEC derived CXCL12 and its cognate receptor CXCR4 on angiogenic tip EC. CXCL12 was in vitro and in vivo validated as actionable TEC target by highlighting the vessel number- and density- reducing activity of the CXCR4-inhibitor AMD3100 in murine PCa as well as by inhibition of TEC proliferation and migration in vitro. Conclusions: Overall, our comprehensive analysis identified novel PCa TEC targets and highlights CXCR4/CXCL12 interaction as a potential novel target to interfere with tumor angiogenesis in PCa

    Outcomes from elective colorectal cancer surgery during the SARS-CoV-2 pandemic

    Get PDF
    This study aimed to describe the change in surgical practice and the impact of SARS-CoV-2 on mortality after surgical resection of colorectal cancer during the initial phases of the SARS-CoV-2 pandemic

    The Interplay between Perioperative Oxidative Stress and Hepatic Dysfunction after Human Liver Resection: A Prospective Observational Pilot Study

    No full text
    Post-hepatectomy liver failure (PHLF) remains the major contributor to death after liver resection. Oxidative stress is associated with postoperative complications, but its impact on liver function is unclear. This first in-human, prospective, single-center, observational pilot study evaluated perioperative oxidative stress and PHLF according to the ISGLS (International Study Group for Liver Surgery). Serum 8-isoprostane, 4-hydroxynonenal (4-HNE), total antioxidative capacity, vitamins A and E, and intraoperative, sequential hepatic tissue 4-HNE and UCP2 (uncoupling protein 2) immunohistochemistry (IHC) were assessed. The interaction with known risk factors for PHLF and the predictive potential of oxidative stress markers were analyzed. Overall, 52 patients were included (69.2% major liver resection). Thirteen patients (25%) experienced PHLF, a major factor for 90-day mortality (23% vs. 0%; p = 0.013). Post-resection, pro-oxidative 8-isoprostane significantly increased (p = 0.038), while 4-HNE declined immediately (p< 0.001). Antioxidative markers showed patterns of consumption starting post-resection (p< 0.001). Liver tissue oxidative stress increased stepwise from biopsies taken after laparotomy to post-resection in situ liver and resection specimens (all p< 0.001). Cholangiocarcinoma patients demonstrated significantly higher serum and tissue oxidative stress levels at various timepoints, with consistently higher preoperative values in advanced tumor stages. Combining intraoperative, post-resection 4-HNE serum levels and in situ IHC early predicted PHLF with an AUC of 0.855 (63.6% vs. 0%; p< 0.001). This was also associated with grade B/C PHLF (36.4% vs. 0%; p = 0.021) and 90-day mortality (18.2% vs. 0%; p = 0.036). In conclusion, distinct patterns of perioperative oxidative stress levels occur in patients with liver dysfunction. Combining intraoperative serum and liver tissue markers predicts subsequent PHLF. Cholangiocarcinoma patients demonstrated pronounced systemic and hepatic oxidative stress, with increasing levels in advanced tumor stages, thus representing a worthwhile target for future exploratory and therapeutic studies

    Age-specific response of skeletal muscle extracellular matrix to acute resistance exercise: A pilot study

    No full text
    The extracellular matrix (ECM) plays an essential role in the development, growth and repair of skeletal muscles and serves to transmit contractile force. However, its regulation is poorly understood. This study investigates the age-specificity of the effects of acute resistance exercise on ECM gene expression. To this purpose, five young (YM, 23.8 ± 2.2 yrs.) and 5 elderly (EM, 66.8 ± 4.1 yrs.) men performed one session of unilateral leg press and leg extension exercises. Six hours post-exercise, biopsies were taken from the vastus lateralis muscles of both legs. A PCR array was used to profile the expression of 84 ECM-related genes, of which 6 were validated by qPCR. The PCR array found 9 and 4 ECM-associated genes to be selectively altered (>1.5-fold change) in YM or EM only. Four further genes were upregulated in YM but downregulated in EM. Of the 6 genes validated on individual samples MMP9 expression increased in YM (9.7-fold) and decreased (0.2-fold) in EM. MMP15 was downregulated in EM only (0.6-fold). A significant correlation between leg extension 1 RM and changes in COL7A1 expression (ρ = 0.71) suggests a potential influence of fitness levels. In conclusion, acute resistance exercise affects ECM gene expression at least partly in an age-specific manner. The altered expression of genes encoding matrix metalloproteinases (MMP3, MMP9, MMP15) highlights the role of remodelling processes in the response to an acute bout of resistance exercise. Larger studies are required to verify the age-associated differences in gene expression profiles and establish their functional implications.© 2018 The Author(s

    STAT3/LKB1 controls metastatic prostate cancer by regulating mTORC1/CREB pathway

    No full text
    Prostate cancer (PCa) is a common and fatal type of cancer in men. Metastatic PCa (mPCa) is a major factor contributing to its lethality, although the mechanisms remain poorly understood. PTEN is one of the most frequently deleted genes in mPCa. Here we show a frequent genomic co-deletion of PTEN and STAT3 in liquid biopsies of patients with mPCa. Loss of Stat3 in a Pten-null mouse prostate model leads to a reduction of LKB1/pAMPK with simultaneous activation of mTOR/CREB, resulting in metastatic disease. However, constitutive activation of Stat3 led to high LKB1/pAMPK levels and suppressed mTORC1/CREB pathway, preventing mPCa development. Metformin, one of the most widely prescribed therapeutics against type 2 diabetes, inhibits mTORC1 in liver and requires LKB1 to mediate glucose homeostasis. We find that metformin treatment of STAT3/AR-expressing PCa xenografts resulted in significantly reduced tumor growth accompanied by diminished mTORC1/CREB, AR and PSA levels. PCa xenografts with deletion of STAT3/AR nearly completely abrogated mTORC1/CREB inhibition mediated by metformin. Moreover, metformin treatment of PCa patients with high Gleason grade and type 2 diabetes resulted in undetectable mTORC1 levels and upregulated STAT3 expression. Furthermore, PCa patients with high CREB expression have worse clinical outcomes and a significantly increased risk of PCa relapse and metastatic recurrence. In summary, we have shown that STAT3 controls mPCa via LKB1/pAMPK/mTORC1/CREB signaling, which we have identified as a promising novel downstream target for the treatment of lethal mPCa

    Altered membrane rigidity via enhanced endogenous cholesterol synthesis drives cancer cell resistance to destruxins

    No full text
    Destruxins, secondary metabolites of entomopathogenic fungi, exert a wide variety of interesting characteristics ranging from antiviral to anticancer effects. Although their mode of action was evaluated previously, the molecular mechanisms of resistance development are unknown. Hence, we have established destruxin-resistant sublines of HCT116 colon carcinoma cells by selection with the most prevalent derivatives, destruxin (dtx)A, dtxB and dtxE. Various cell biological and molecular techniques were applied to elucidate the regulatory mechanisms underlying these acquired and highly stable destruxin resistance phenotypes. Interestingly, well-known chemoresistance-mediating ABC efflux transporters were not the major players. Instead, in dtxA- and dtxB-resistant cells a hyper-activated mevalonate pathway was uncovered resulting in increased de-novo cholesterol synthesis rates and elevated levels of lanosterol, cholesterol as well as several oxysterol metabolites. Accordingly, inhibition of the mevalonate pathway at two different steps, using either statins or zoledronic acid, significantly reduced acquired but also intrinsic destruxin resistance. Vice versa, cholesterol supplementation protected destruxin-sensitive cells against their cytotoxic activity. Additionally, an increased cell membrane adhesiveness of dtxA-resistant as compared to parental cells was detected by atomic force microscopy. This was paralleled by a dramatically reduced ionophoric capacity of dtxA in resistant cells when cultured in absence but not in presence of statins. Summarizing, our results suggest a reduced ionophoric activity of destruxins due to cholesterol-mediated plasma membrane re-organization as molecular mechanism underlying acquired destruxin resistance in human colon cancer cells. Whether this mechanism might be valid also in other cell types and organisms exposed to destruxins e.g. as bio-insecticides needs to be evaluated

    Supplementary Material for: A Prospective Cohort Study in Patients with Type 2 Diabetes Mellitus for Validation of Biomarkers (PROVALID) – Study Design and Baseline Characteristics

    No full text
    Background/Aims: The prevalence of diabetes mellitus type 2 and kidney disease in these patients varies widely between European countries. Methods: In addition to store bio-samples the “Prospective cohort study in patients with type 2 diabetes mellitus for validation of biomarkers” collects information on history, physical status, laboratory measurements and medication in 4000 patients with diabetes mellitus type 2, being taken care of at the primary level of healthcare in 5 European countries (Austria, Hungary, Netherlands, Poland and Scotland). Next to comparing the rate of loss of eGFR between the countries, a further objective of the PROVALID study is to determine the 5-year cumulative incidence of renal and cardiovascular outcomes. Results: The mean age of the population recruited is 62.9±10 years, 54.6% are male and the mean BMI is 30.9±5.4 kg/m2. Metabolic control (median HBA1c 6.8 % (6.2; 7.5)) is achieved via administration of metformin in 67.4% of the patients and insulin in 30.3%. Median systolic and diastolic blood pressure at recruitment is 135 (125; 146) and 80 (72; 85) mmHg, 65.4% of subjects received RAAS blocking agents. Mean eGFR is 80.7±29.2 ml/min/1.73m2 and median baseline albumin/creatinine ratio 8.3 mg (IQR: 3.8 and 25.1). Conclusion: PROVALID will provide information on incidence and progression of renal and cardiovascular disease and therapy in patients with type 2 diabetes mellitus in different European countries. Thus, in contrast to many other cohort studies we will be able to associate national clinical practise pattern with outcome in this highly vulnerable patient population

    Unto the third generation: evidence for strong familial aggregation of physicians, psychologists, and psychotherapists among first-year medical and psychology students in a nationwide Austrian cohort census

    No full text
    Background: Medical students present higher numbers of physician relatives than expectable from the total population prevalence of physicians. Evidence for such a familial aggregation effect of physicians has emerged in investigations from the Anglo-American, Scandinavian, and German-speaking areas. In particular, past data from Austria suggest a familial aggregation of the medical, as well as of the psychological and psychotherapeutic, professions among medical and psychology undergraduates alike. Here, we extend prior related studies by examining (1) the extent to which familial aggregation effects apply to the whole nation-wide student census of all relevant (eight) public universities in Austria; (2) whether effects are comparable for medical and psychology students; (3) and whether these effects generalize to relatives of three interrelated health professions (medicine, psychology, and psychotherapy). Methods: We investigated the familial aggregation of physicians, psychologists, and psychotherapists, based on an entire cohort census of first-year medical and psychology students (n = 881 and 920) in Austria with generalized linear mixed models. Results: For both disciplines, we found strong familial aggregation of physicians, psychologists, and psychotherapists. As compared with previous results, directionally opposite time trends within disciplines emerged: familial aggregation of physicians among medical students has decreased, whilst familial aggregation of psychologists among psychology students has increased. Further, there were sex-of-relative effects (i.e., more male than female physician relatives), but no substantial sex-of-student effects (i.e., male and female students overall reported similar numbers of relatives for all three professions of interest). In addition, there were age-benefit effects, i.e., students with a relative in the medical or the psychotherapeutic profession were younger than students without, thus suggesting earlier career decisions. Conclusions: The familial aggregation of physicians, psychologists, and psychotherapists is high among medical and psychology undergraduates in Austria. Discussed are implications of these findings (e.g., gender equity, feminization of the medical field, ideas for curricular implementation and student counselling), study limitations, and avenues for future research.© The Author(s). 201

    Drugs from nature targeting inflammation (DNTI): a successful Austrian interdisciplinary network project

    No full text
    Inflammation is part of numerous pathological conditions, which are lacking satisfying treatment and effective concepts of prevention. A national research network project, DNTI, involving scientists from six Austrian universities as well as several external partners aimed to identify and characterize natural products capable of combating inflammatory processes specifically in the cardiovascular system. The combined use of computational techniques with traditional knowledge, high-tech chemical analysis and synthesis, and a broad range of in vitro, cell-based, and in vivo pharmacological models led to the identification of a series of promising anti-inflammatory drug lead candidates. Mechanistic studies contributed to a better understanding of their mechanism of action and delivered new knowledge on the molecular level of inflammatory processes. Herein, the used approaches and selected highlights of the results of this interdisciplinary project are presented
    • 

    corecore