16 research outputs found

    Quantification of total dendritic area of ddaC neurons.

    No full text
    <p>Quantification of total dendritic area of ddaC neurons.</p

    Cullin1 and Cullin3 have opposite effects on dendritic arborization.

    No full text
    <p>(A) Average number of the terminal dendritic ends in wild type, <i>cul1</i> and <i>cul3</i> mutant ddaC neurons. (B) Quantifications of total dendritic length in wild type, <i>cul1</i> and <i>cul3</i> mutant ddaC neurons. (C) Quantifications of total dendritic area in wild type, <i>cul1</i> and <i>cul3</i> mutant ddaC neurons. (D) Sholl analysis histogram of dendritic arbors of wt, <i>cul1</i> and <i>cul3</i> ddaC clones. Error bars represent standard deviation.</p

    Reversed Strahler analysis.

    No full text
    <p>Values are the mean (± standard deviation) number of total dendritic branches in each order. The total number of neurons observed is indicated in parentheses. “–” indicates order that was not observed for the particular genotype.</p

    Loss of <i>cullin3</i> stimulates dendritic elaboration.

    No full text
    <p>(A, E, I, M) MARCM clones of wild type ddaC, ddaA, ddaB, ddaF neurons, respectively. (I′) and (M′) are magnified images from panels (I) and (M). In contrast to wild type, <i>cul3</i>-mutant ddaC (B), ddA (F), ddaB (J), ddaF (N) neurons show increasing dendritic branching. (J′) and (N′) are magnified images from panels (J) and (N). Scale bar: 50 µm. (C, G, K, O) Quantifications of terminal dendritic ends in wild type and two independent <i>cul3</i> alleles mutant ddaC, ddaA, ddaB, ddaF neurons, respectively. (D, H, L, P) Quantifications of total dendritic length in wild type and <i>cul3<sup>gft2</sup></i> mutant ddaC, ddaA, ddaB, ddaF neurons, respectively. ***: p<0.001, **: p<0.01, *: p<0.02.</p

    Kelch stimulates dendritic elaboration in a Cullin3-dependent manner.

    No full text
    <p>(A, F, K, P) MARCM clones of wild type ddaC, ddaA, ddaB, ddaF neurons, respectively. (B, G, L, Q) MARCM clones of <i>UAS-Kelch</i> in these types of neurons, Kelch overexpression stimulates dendritic branching. (C, H, M, R) Double clones of <i>cul3</i> and <i>UAS-Kelch</i> in ddaC, ddaA, ddaB, ddaF neurons. Simultaneous Kelch overexpression and loss of Cullin3 function resulted in increased branching phenotypes, especially in ddaB (M) and ddaF (R) neurons. Scale bar: 50 µm. (D, I, N, S) Quantifications of terminal dendritic ends in wild type, <i>UAS-Kelch</i>, and <i>cul3 UAS-Kelch</i> double clones in ddaC, ddaA, ddaB, ddaF neurons, respectively. (E, J, O, T) Quantifications of total dendritic length in wild type, <i>UAS-Kelch</i>, and <i>cul3 UAS-Kelch</i> double clones in ddaC, ddaA, ddaB, ddaF neurons, respectively. ***: p<0.001, **: p<0.01, *: p<0.02.</p

    Reversed Strahler analysis of the ddaC neurons.

    No full text
    <p>Values are the mean (± standard deviation) number of total dendritic branches in each order. The total number of neurons observed is indicated in parentheses. “–” indicates order that was not observed for the particular genotype.</p

    Stabilization of Kelch promotes dendritic protrusions.

    No full text
    <p>(A, C) Wild type ddaE and ddaD neurons. (B, D) ddaE and ddaD neurons of <i>cul3 UAS-Kelch</i> double clones. (A′), (B′), (C′) and (D′) are magnified fragments of panels (A), (B), (C) and (D). Impaired degradation of Kelch expression led to the second level protrusions in normally smooth ddaE and ddaD neurons.</p

    The F-box protein Slimb is involved in dendritic branching.

    No full text
    <p>(A) PNS neurons in a non-mutant third instar larva, visualized by the <i>109(2)80-GAL4</i>-driven expression of <i>UAS-GFP</i>. (B) <i>CSN5</i> and <i>slmb</i>, a component of the SCF complex, interact genetically in dendritic development leading to reduced dendritic branching. (C, F, I) Typical wild type ddaC, ddaF, ddaB neurons, respectively. (D, G, J) <i>slmb</i>-mutant mosaic clones of ddaC, ddaF, ddaB neurons with the characteristic fewer branching phenotype. Scale bar: 50 µm. (E, H, K) Quantifications of terminal dendritic ends in wild type and <i>slmb</i> mutant ddaC, ddaF and ddaB neurons. ***: p<0.001, **: p<0.01, *: p<0.03.</p

    Loss of <i>kelch</i> inhibits dendritic branching.

    No full text
    <p>(A, E, I, M) Wild type ddaC, ddaA, ddaB, ddaF neurons, respectively. MARCM clones of <i>kelch<sup>DE1</sup></i> in ddaC (B), ddaA (F), ddaB (J), ddaF (N) neurons show reduced dendritic elaboration. (C, G, K, O) Quantifications of terminal dendritic ends in wild type and <i>kel<sup>DE1</sup></i> mutant ddaC, ddaA, ddaB, ddaF neurons, respectively. Scale bar: 50 µm. (D, H, L, P) Quantifications of total dendritic length in wild type and <i>kel<sup>DE1</sup></i> mutant ddaC, ddaA, ddaB, ddaF neurons, respectively. ***: p<0.001, **:p<0.01, *: p<0.02.</p

    <i>CSN5</i> or <i>Nedd8</i> mutations have a diverse effect on dendritic branching.

    No full text
    <p>(A) Mosaic clone of a wild-type ddaC neuron marked by GFP. (B) In <i>CSN5<sup>N</sup></i> mutants, ddaC neurons frequently show decreased dendritic branching. (C) A fraction of <i>CSN5<sup>N</sup></i> mosaic clones has increased dendritic branching. <i>CSN5<sup>P</sup></i> mutants demonstrate similar repressed (D) or stimulated (E) dendritic arborization phenotype. (F) Mutations in <i>Nedd8</i> frequently decrease dendritic elaboration. (G) Loss of <i>Nedd8</i> can lead to increased dendritic branching. Scale bar: 50 µm. (H) Quantifications of terminal dendritic ends in wild type, <i>CSN5<sup>N</sup></i>, <i>CSN5<sup>P</sup></i> and <i>Nedd8</i> mutant ddaC neurons. Numbers of dendritic ends in individual neurons are shown instead of average value.</p
    corecore