4 research outputs found

    Domestic Energy Efficiency Scenarios for Northern Ireland

    Get PDF
    Building fabric retrofitting is an important first step in improving building energy efficiency. The United Kingdom’s (UK) housing stock is one of the most inefficient in Europe, and Northern Ireland has the second-highest level of fuel poverty in the UK. This Northern Irish case study developed three fabric retrofit scenarios that estimate potential demand reductions, CO2 emissions removals and retrofit costs. The first scenario reduces domestic demand by 10% and removes 6% of domestic emissions. The second scenario is more ambitious than the first, and results in an 18% reduction in demand and 12% of emissions removed. The third scenario proposes fabric retrofitting to PassivHaus standard and results in a 42% reduction in demand and 27% of emissions removed. Furthermore, retrofit schemes can provide up to approximately 350,000 jobs annually between 2022 and 2050 for the Northern Irish population. This study demonstrates how fabric retrofit scenarios can be streamlined to the unique features of a housing stock. It shows that fabric retrofit research is important for the formulation of energy efficiency policy and emphasises that domestic sector retrofitting will yield socioeconomic and environmental benefits locally and internationally

    How heat pumps and thermal energy storage can be used to manage wind power: A study of Ireland

    Get PDF
    Although energy for heating and cooling represents the largest proportion of demand, little progress towards meeting environmental targets has been achieved in these sectors. The recent rapid progress in integrating renewable energy into the electricity sector however, can help in decarbonising heat by electrification. This paper investigates the impacts and benefits of heat electrification in a wind dominated market by considering two options; with heat pumps, and with direct electric heating, both operated with energy storage. The Irish all-island electricity market is used as a case study. Modelling results reveal the significant potential of heat pump electrification, delivering at least two and three times less carbon emissions respectively, when compared with conventional options such as gas or oil for 20% of domestic sector of the All Ireland market. Heat electrification using direct, resistive heating systems is found to be the most carbon intensive method. Energy storage systems combined with heat pumps could deliver potentially significant benefits in terms of emissions reductions, efficient market operation and mitigating the impacts of variable renewable energy on baseload generation. The main barrier to heat electrification in the all island market is the absence of appropriate policy measures to support relevant technologies
    corecore