55 research outputs found

    Important Roles for E Protein Binding Sites within the Immunoglobulin κ Chain Intronic Enhancer in Activating Vκ Jκ Rearrangement

    Get PDF
    The immunoglobulin κ light chain intronic enhancer (iEκ) activates κ rearrangement and is required to maintain the earlier or more efficient rearrangement of κ versus lambda (λ). To understand the mechanism of how iEκ regulates κ rearrangement, we employed homologous recombination to mutate individual functional motifs within iEκ in the endogenous κ locus, including the NF-κB binding site (κB), as well as κE1, κE2, and κE3 E boxes. Analysis of the impacts of these mutations revealed that κE2 and to a lesser extent κE1, but not κE3, were important for activating κ rearrangement. Surprisingly, mutation of the κB site had no apparent effect on κ rearrangement. Comparable to the deletion of the entire iEκ, simultaneous mutation of κE1 and κE2 reduces the efficiency of κ rearrangement much more dramatically than either κE1 or κE2 mutation alone. Because E2A family proteins are the only known factors that bind to these E boxes, these findings provide unambiguous evidence that E2A is a key regulator of κ rearrangement

    Critical roles of the immunoglobulin intronic enhancers in maintaining the sequential rearrangement of IgH and Igk loci

    Get PDF
    V(D)J recombination of immunoglobulin (Ig) heavy (IgH) and light chain genes occurs sequentially in the pro– and pre–B cells. To identify cis-elements that dictate this order of rearrangement, we replaced the endogenous matrix attachment region/Igk intronic enhancer (MiEκ) with its heavy chain counterpart (Eμ) in mice. This replacement, denoted EμR, substantially increases the accessibility of both Vκ and Jκ loci to V(D)J recombinase in pro–B cells and induces Igk rearrangement in these cells. However, EμR does not support Igk rearrangement in pre–B cells. Similar to that in MiEκ−/− pre–B cells, the accessibility of Vκ segments to V(D)J recombinase is considerably reduced in EμR pre–B cells when compared with wild-type pre–B cells. Therefore, Eμ and MiEκ play developmental stage-specific roles in maintaining the sequential rearrangement of IgH and Igk loci by promoting the accessibility of V, D, and J loci to the V(D)J recombinase

    LYVE1 Marks the Divergence of Yolk Sac Definitive Hemogenic Endothelium from the Primitive Erythroid Lineage.

    Get PDF
    The contribution of the different waves and sites of developmental hematopoiesis to fetal and adult blood production remains unclear. Here, we identify lymphatic vessel endothelial hyaluronan receptor-1 (LYVE1) as a marker of yolk sac (YS) endothelium and definitive hematopoietic stem and progenitor cells (HSPCs). Endothelium in mid-gestation YS and vitelline vessels, but not the dorsal aorta and placenta, were labeled by Lyve1-Cre. Most YS HSPCs and erythro-myeloid progenitors were Lyve1-Cre lineage traced, but primitive erythroid cells were not, suggesting that they represent distinct lineages. Fetal liver (FL) and adult HSPCs showed 35%-40% Lyve1-Cre marking. Analysis of circulation-deficient Ncx1-/- concepti identified the YS as a major source of Lyve1-Cre labeled HSPCs. FL proerythroblast marking was extensive at embryonic day (E) 11.5-13.5, but decreased to hematopoietic stem cell (HSC) levels by E16.5, suggesting that HSCs from multiple sources became responsible for erythropoiesis. Lyve1-Cre thus marks the divergence between YS primitive and definitive hematopoiesis and provides a tool for targeting YS definitive hematopoiesis and FL colonization

    Gene Expression Commons: an open platform for absolute gene expression profiling.

    Get PDF
    Gene expression profiling using microarrays has been limited to comparisons of gene expression between small numbers of samples within individual experiments. However, the unknown and variable sensitivities of each probeset have rendered the absolute expression of any given gene nearly impossible to estimate. We have overcome this limitation by using a very large number (>10,000) of varied microarray data as a common reference, so that statistical attributes of each probeset, such as the dynamic range and threshold between low and high expression, can be reliably discovered through meta-analysis. This strategy is implemented in a web-based platform named "Gene Expression Commons" (https://gexc.stanford.edu/) which contains data of 39 distinct highly purified mouse hematopoietic stem/progenitor/differentiated cell populations covering almost the entire hematopoietic system. Since the Gene Expression Commons is designed as an open platform, investigators can explore the expression level of any gene, search by expression patterns of interest, submit their own microarray data, and design their own working models representing biological relationship among samples

    Identification of Multipotent Progenitors that Emerge Prior to Hematopoietic Stem Cells in Embryonic Development

    Get PDF
    Summary Hematopoiesis in the embryo proceeds in a series of waves, with primitive erythroid-biased waves succeeded by definitive waves, within which the properties of hematopoietic stem cells (multilineage potential, self-renewal, and engraftability) gradually arise. Whereas self-renewal and engraftability have previously been examined in the embryo, multipotency has not been thoroughly addressed, especially at the single-cell level or within well-defined populations. To identify when and where clonal multilineage potential arises during embryogenesis, we developed a single-cell multipotency assay. We find that, during the initiation of definitive hematopoiesis in the embryo, a defined population of multipotent, engraftable progenitors emerges that is much more abundant within the yolk sac (YS) than the aorta-gonad-mesonephros (AGM) or fetal liver. These experiments indicate that multipotent cells appear in concert within both the YS and AGM and strongly implicate YS-derived progenitors as contributors to definitive hematopoiesis
    • …
    corecore