10 research outputs found

    Cooptimization of Adhesion and Power Conversion Efficiency of Organic Solar Cells by Controlling Surface Energy of Buffer Layers

    No full text
    Here, we demonstrate the cooptimization of the interfacial fracture energy and power conversion efficiency (PCE) of poly­[<i>N</i>-9′-heptadecanyl-2,7-carbazole-<i>alt</i>-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)] (PCDTBT)-based organic solar cells (OSCs) by surface treatments of the buffer layer. The investigated surface treatments of the buffer layer simultaneously changed the crack path and interfacial fracture energy of OSCs under mechanical stress and the work function of the buffer layer. To investigate the effects of surface treatments, the work of adhesion values were calculated and matched with the experimental results based on the Owens–Wendt model. Subsequently, we fabricated OSCs on surface-treated buffer layers. In particular, ZnO layers treated with poly­[(9,9-bis­(3′-(<i>N</i>,<i>N</i>-dimethyl­amino)­propyl)-2,7-fluorene)-<i>alt</i>-2,7-(9,9-dioctylfluorene)] (PFN) simultaneously satisfied the high mechanical reliability and PCE of OSCs by achieving high work of adhesion and optimized work function

    Simultaneously Enhancing the Cohesion and Electrical Conductivity of PEDOT:PSS Conductive Polymer Films using DMSO Additives

    No full text
    Conductive polymer poly­(3,4-ethylene­dioxy­thiophene):­poly­(styrene­sulfonate) (PEDOT:PSS) has attracted significant attention as a hole transport and electrode layer that substitutes metal electrodes in flexible organic devices. However, its weak cohesion critically limits the reliable integration of PEDOT:PSS in flexible electronics, which highlights the importance of further investigation of the cohesion of PEDOT:PSS. Furthermore, the electrical conductivity of PEDOT:PSS is insufficient for high current-carrying devices such as organic photovoltaics (OPVs) and organic light emitting diodes (OLEDs). In this study, we improve the cohesion and electrical conductivity through adding dimethyl sulfoxide (DMSO), and we demonstrate the significant changes in the properties that are dependent on the wt % of DMSO. In particular, with the addition of 3 wt % DMSO, the maximum enhancements for cohesion and electrical conductivity are observed where the values increase by 470% and 6050%, respectively, due to the inter-PEDOT bridging mechanism. Furthermore, when OLED devices using the PEDOT:PSS films are fabricated using the 3 wt % DMSO, the display exhibits 18% increased current efficiency

    Accelerated Degradation Due to Weakened Adhesion from Li-TFSI Additives in Perovskite Solar Cells

    No full text
    Reliable integration of organometallic halide perovskite in photovoltaic devices is critically limited by its low stability in humid environments. Furthermore, additives to increase the mobility in the hole transport material (HTM) have deliquescence and hygroscopic properties, which attract water molecules and result in accelerated degradation of the perovskite devices. In this study, a double cantilever beam (DCB) test is used to investigate the effects of additives in the HTM layer on the perovskite layer through neatly delaminating the interface between the perovskite and HTM layers. Using the DCB test, the bottom surface of the HTM layers is directly observed, and it is found that the additives are accumulated at the bottom along the thickness (i.e., through-plane direction) of the films. It is also found that the additives significantly decrease the adhesion at the interface between the perovskite and HTM layers by more than 60% through hardening the HTM films. Finally, the adhesion-based degradation mechanism of perovskite devices according to the existence of additives is proposed for humid environments

    Anomalous Stretchable Conductivity Using an Engineered Tricot Weave

    No full text
    Robust electric conduction under stretching motions is a key element in upcoming wearable electronic devices but is fundamentally very difficult to achieve because percolation pathways in conductive media are subject to collapse upon stretching. Here, we report that this fundamental challenge can be overcome by using a parameter uniquely available in textiles, namely a weaving structure. A textile structure alternately interwoven with inelastic and elastic yarns, achieved via a tricot weave, possesses excellent elasticity (strain up to 200%) in diagonal directions. When this textile is coated with conductive nanomaterials, proper textile engineering allows the textile to obtain an unprecedented 7-fold conductivity increase, with conductivity reaching 33,000 S cm<sup>–1</sup>, even at 130% strain, due to enhanced interyarn contacts. The observed stretching conductivity can be described well using a modified 3D percolation theory that reflects the weaving effect and is also utilized for stretchable electronic interconnects and supercapacitors with high performance

    Hyperbranched β‑Cyclodextrin Polymer as an Effective Multidimensional Binder for Silicon Anodes in Lithium Rechargeable Batteries

    No full text
    Polymeric binders play an important role in electrochemical performance of high-capacity silicon (Si) anodes that usually suffer from severe capacity fading due to unparalleled volume change of Si during cycling. In an effort to find efficient polymeric binders that could mitigate such capacity fading, herein, we introduce polymerized β-cyclodextrin (β-CDp) binder for Si nanoparticle anodes. Unlike one-dimensional binders, hyperbranched network structure of β-CDp presents multidimensional hydrogen-bonding interactions with Si particles and therefore offers robust contacts between both components. Even the Si nanoparticles that lost the original contacts with the binder during cycling recover within the multidimensional binder network, thus creating a self-healing effect. Utilizing these advantageous features, β-CDp-based Si electrode shows markedly improved cycling performance compared to those of other well-known binder cases, especially when combined with linear polymers at an appropriate ratio to form hybrid binders

    Wearable Textile Battery Rechargeable by Solar Energy

    No full text
    Wearable electronics represent a significant paradigm shift in consumer electronics since they eliminate the necessity for separate carriage of devices. In particular, integration of flexible electronic devices with clothes, glasses, watches, and skin will bring new opportunities beyond what can be imagined by current inflexible counterparts. Although considerable progresses have been seen for wearable electronics, lithium rechargeable batteries, the power sources of the devices, do not keep pace with such progresses due to tenuous mechanical stabilities, causing them to remain as the limiting elements in the entire technology. Herein, we revisit the key components of the battery (current collector, binder, and separator) and replace them with the materials that support robust mechanical endurance of the battery. The final full-cells in the forms of clothes and watchstraps exhibited comparable electrochemical performance to those of conventional metal foil-based cells even under severe folding–unfolding motions simulating actual wearing conditions. Furthermore, the wearable textile battery was integrated with flexible and lightweight solar cells on the battery pouch to enable convenient solar-charging capabilities

    Wearable Textile Battery Rechargeable by Solar Energy

    No full text
    Wearable electronics represent a significant paradigm shift in consumer electronics since they eliminate the necessity for separate carriage of devices. In particular, integration of flexible electronic devices with clothes, glasses, watches, and skin will bring new opportunities beyond what can be imagined by current inflexible counterparts. Although considerable progresses have been seen for wearable electronics, lithium rechargeable batteries, the power sources of the devices, do not keep pace with such progresses due to tenuous mechanical stabilities, causing them to remain as the limiting elements in the entire technology. Herein, we revisit the key components of the battery (current collector, binder, and separator) and replace them with the materials that support robust mechanical endurance of the battery. The final full-cells in the forms of clothes and watchstraps exhibited comparable electrochemical performance to those of conventional metal foil-based cells even under severe folding–unfolding motions simulating actual wearing conditions. Furthermore, the wearable textile battery was integrated with flexible and lightweight solar cells on the battery pouch to enable convenient solar-charging capabilities

    Wearable Textile Battery Rechargeable by Solar Energy

    No full text
    Wearable electronics represent a significant paradigm shift in consumer electronics since they eliminate the necessity for separate carriage of devices. In particular, integration of flexible electronic devices with clothes, glasses, watches, and skin will bring new opportunities beyond what can be imagined by current inflexible counterparts. Although considerable progresses have been seen for wearable electronics, lithium rechargeable batteries, the power sources of the devices, do not keep pace with such progresses due to tenuous mechanical stabilities, causing them to remain as the limiting elements in the entire technology. Herein, we revisit the key components of the battery (current collector, binder, and separator) and replace them with the materials that support robust mechanical endurance of the battery. The final full-cells in the forms of clothes and watchstraps exhibited comparable electrochemical performance to those of conventional metal foil-based cells even under severe folding–unfolding motions simulating actual wearing conditions. Furthermore, the wearable textile battery was integrated with flexible and lightweight solar cells on the battery pouch to enable convenient solar-charging capabilities

    Wearable Textile Battery Rechargeable by Solar Energy

    No full text
    Wearable electronics represent a significant paradigm shift in consumer electronics since they eliminate the necessity for separate carriage of devices. In particular, integration of flexible electronic devices with clothes, glasses, watches, and skin will bring new opportunities beyond what can be imagined by current inflexible counterparts. Although considerable progresses have been seen for wearable electronics, lithium rechargeable batteries, the power sources of the devices, do not keep pace with such progresses due to tenuous mechanical stabilities, causing them to remain as the limiting elements in the entire technology. Herein, we revisit the key components of the battery (current collector, binder, and separator) and replace them with the materials that support robust mechanical endurance of the battery. The final full-cells in the forms of clothes and watchstraps exhibited comparable electrochemical performance to those of conventional metal foil-based cells even under severe folding–unfolding motions simulating actual wearing conditions. Furthermore, the wearable textile battery was integrated with flexible and lightweight solar cells on the battery pouch to enable convenient solar-charging capabilities

    Wearable Textile Battery Rechargeable by Solar Energy

    No full text
    Wearable electronics represent a significant paradigm shift in consumer electronics since they eliminate the necessity for separate carriage of devices. In particular, integration of flexible electronic devices with clothes, glasses, watches, and skin will bring new opportunities beyond what can be imagined by current inflexible counterparts. Although considerable progresses have been seen for wearable electronics, lithium rechargeable batteries, the power sources of the devices, do not keep pace with such progresses due to tenuous mechanical stabilities, causing them to remain as the limiting elements in the entire technology. Herein, we revisit the key components of the battery (current collector, binder, and separator) and replace them with the materials that support robust mechanical endurance of the battery. The final full-cells in the forms of clothes and watchstraps exhibited comparable electrochemical performance to those of conventional metal foil-based cells even under severe folding–unfolding motions simulating actual wearing conditions. Furthermore, the wearable textile battery was integrated with flexible and lightweight solar cells on the battery pouch to enable convenient solar-charging capabilities
    corecore