5 research outputs found

    16S rRNA assessment of the influence of shading on early-successional biofilms in experimental streams

    Get PDF
    Elevated nutrient levels can lead to excessive biofilm growth, but reducing nutrient pollution is often challenging. There is therefore interest in developing control measures for biofilm growth in nutrient-rich rivers that could act as complement to direct reductions in nutrient load. Shading of rivers is one option that can mitigate blooms, but few studies have experimentally examined the differences in biofilm communities grown under shaded and unshaded conditions. We investigated the assembly and diversity of biofilm communities using in situ mesocosms within the River Thames (UK). Biofilm composition was surveyed by 454 sequencing of 16S amplicons (∌400 bp length covering regions V6/V7). The results confirm the importance of sunlight for biofilm community assembly; a resource that was utilized by a relatively small number of dominant taxa, leading to significantly less diversity than in shaded communities. These differences between unshaded and shaded treatments were either because of differences in resource utilization or loss of diatom-structures as habitats for bacteria. We observed more co-occurrence patterns and network interactions in the shaded communities. This lends further support to the proposal that increased river shading can help mitigate the effects from macronutrient pollution in rivers

    ‘House and garden’:larval galleries enhance resource availability for a sedentary caddisfly

    No full text
    1. Sedentary grazers can be numerous in fresh waters, despite the constraints on resource availability and the increased predation risk inherent in this lifestyle. The retreats of sedentary grazers have been assumed to provide protection to the resident (a ‘house’), but also may provide additional fertilised food for the grazer (i.e. a ‘garden’). If retreats function as a garden, then they should (i) contain a higher quality and/or quantity of food than the alternative food source. Furthermore, the proportion of retreat-derived carbon and nitrogen assimilated by the resident should be (ii) related to overall resource availability (more when resources are limited) or (iii) perhaps also to larval density. Alternatively, if retreats provide a less risky food source, then (iv) assimilation of material from the retreat is likely to be greater under conditions in which the risk of emerging from the retreat is high. 2. We tested these four hypotheses for the common and widespread gallery-building grazing caddisfly Tinodes waeneri. Resource availability, larval density and biomass, and exposure were measured for populations from six lakes of differing productivity in August, October and January. 3. Galleries always contained more algal food than the surrounding epilithon, suggesting that gardening is effective. Furthermore, gallery chlorophyll a content in August, and the disparity in food quality (assessed from the C : N ratio) between gallery and epilithon (quality higher in the former) in October were positively related to the proportion of larval biomass that was derived from the gallery. Larval density and wave exposure parameters were not related to larval assimilation of gallery material. 4. Galleries that are fertilised by the occupant provide more, and sometimes also better quality, food (in terms of the C : N ratio) than is otherwise available. Thus, the gallery plays a substantial role in larval nutrition, and this role is greater at key times of food shortage

    Gardening by the psychomyiid caddisfly Tinodes waeneri:evidence from stable isotopes

    No full text
    Sedentary species face a trade-off between the benefits of exploiting food close to their homes and the cost of defending it. In aquatic systems, it has been suggested that some sedentary grazers can increase the range of circumstances under which they are at an advantage over mobile grazers by enhancing food resources within their feeding territories through ‘gardening’. We examined this for the retreat-building sedentary larvae of the caddis Tinodes waeneri, which are often dominant in the littoral of lakes. We hypothesised that T. waeneri gardens by fertilising its retreat (a fixed ‘gallery’ on which algae and other microorganisms grow), and that gardening would be more important in lower productivity lakes. We tested this by analysing the carbon and nitrogen stable isotope ratios of larvae, their galleries and the general background epilithon, collected from rocks in the littoral zones of six lakes spread across a natural nutrient gradient. We found evidence of nutrient recycling within the Tinodes gallery community in all lakes. Galleries were 15N-depleted compared to the epilithon, suggesting that algae on galleries preferentially assimilated 14N from larval excretions that were themselves 15N-depleted relative to the larval food source. Mixing model results indicate that galleries formed an important larval carbon and nitrogen source, with mean gallery dietary contributions of over 40% in at least one sample period in all lakes studied. Gallery contributions were greater between April and October than in January and, contrary to our initial hypothesis, greater in the more productive lakes of those surveyed. Nevertheless, T. waeneri galleries do act as a fertilised garden. ‘Gardening’ appears to be widespread in this species, and may affect productivity and patterns of nitrogen retention within the stony littoral of lakes

    Insect pollinators: linking research and policy. Workshop report.

    Get PDF
    EXECUTIVE SUMMARY Pollinators interact with plants to underpin wider biodiversity, ecosystem function, ecosystem services to agricultural crops and ultimately human nutrition. The conservation of pollinators is thus an important goal. Pollinators and pollination represent a tractable example of how biodiversity can be linked to an ecosystem service. This represents a case study for exploring the impacts of various policy instruments aiming to halt/reverse the loss of ecosystem services. There is a need to understand how multiple pressures (e.g. habitat loss, fragmentation and degradation, climate change, pests and diseases, invasive species and environmental chemicals) can combine or interact to affect diversity, abundance and health of different pollinator groups. Decision makers need to balance consideration of the effects of single pressures on pollinators against the suite of other pressures on pollinators. For instance, the threat from pesticide use (with its high public and media profile) also needs to be considered in the context of the other threats facing pollinators and balanced against the need for food security. An independent review of the balance of risks across pollinator groups from pesticide use would help synthesise current knowledge into an accessible form for decision makers. To manage or lessen these threats to pollinators (wild and managed) and pollination requires improved knowledge about their basic ecology. We still need to know where and in what numbers different pollinator species occur, how they use different environments, how they interact with each other through shared plants and diseases and how wild pollinator abundance is changing. Decision makers need clear factual evidence for i) the relative contribution of different managed and wild pollinator groups to wildflower and crop pollination and ii) how this varies across different land-uses, ecosystems and regions. Addressing these basic and applied questions will improve our ability to forecast impacts on pollination service delivery to agricultural crops arising from current and future environmental changes, pesticide use and emerging diseases. The development of a long-term, multi-scale monitoring scheme to monitor trends in pollinator (wild and managed) population size and delivery of pollination services (ideally tied to data collection on land-use, pesticide applications and disease incidence at relevant spatial scales) would provide the evidence base for developing the effectiveness of policy and management interventions over time. Such a monitoring scheme would benefit from including research council organisations (e.g. CEH), governmental departments (e.g. Fera), universities, museums and NGOs (e.g. BBKA,SBA, Bumblebee Conservation Trust etc) Insect Pollinators: linking research and policy Workshop Report | 5 In the context of agricultural intensification and conservation we need to establish what type, quality and quantity of interventions (e.g. agri-environment schemes, protected areas) are needed, where to place them and how they can sustain different pollinator populations and effective pollination services. Current monitoring of the risks from diseases and pesticides requires broadening to consider other insects aside from honey bees, unless we can demonstrate that honey bees are good surrogates for all other pollinators. There is a need to increase confidence in regulatory risk assessments pertaining to pathogens and pesticides by incorporating other pollinator species, investigating chronic exposure to multiple chemicals and using field relevant dosages (specific to regions, not using other data sources as surrogates). At present the effects of spatial, social and temporal scales on the benefits stakeholders receive from pollination services are only beginning to be understood. Economic valuation of pollination services can help optimise the cost-effectiveness of service management measures and offer new opportunities to incentivise action or raise awareness among stakeholders. Novel tools and instruments (e.g. education and training) are needed to translate broad international (e.g. CBD, EU Biodiversity Strategy) and national (e.g. England‟s Biodiversity Strategy) policies into local actor (e.g. beekeeper, farmer, citizen scientist) contributions to meet biodiversity commitments Refocusing some public funding to link basic science to development of practical solutions (e.g. better crop protection products, improved disease resistance or treatment) could help science deliver better-targeted evidence for pollinator protection. Scientists need to make more use of opportunities (e.g. POSTnotes1; practitioner guides) to transfer knowledge to a broad audience in order to better influence decision maker and practitioner behaviours. Improved knowledge exchange between scientists and decision makers is important to combating threats to pollination. Central to this is improved understanding of the respective positions of policy makers and scientists. For instance, policy-makers usually need to be presented with a range of options to balance against other areas of policy. Science does not always arrive at a consensus due to uncertainties in data or models. Policy-makers need to understand that scientists are communicating the “best available knowledge at present” and that consequently it is not always possible to give a definitive answer
    corecore