32 research outputs found

    Glutathione S-Transferase Genotype Protects against In Utero Tobacco–linked Lung Function Deficits

    Get PDF
    We would like to thank all the previous contributors to the Perth Infant Asthma Follow up study including David Mullane, Desmond Cox, Kimberley Franks, Lou Landau, Jack Goldblatt, Sally Young, Siew-Kim Khoo, Neil Gibson, Veena Judge, Lyle Palmer, Paul O’Keefe, Jackie Arnott, Steve Stick, Peter Rye, Catherine Hayden and Sunalene Devadason.Peer reviewedPostprin

    Progressive increase of FcεRI expression across several PBMC subsets is associated with atopy and atopic asthma within school-aged children

    Get PDF
    Background: Antigen-specific IgE binds the Fcε receptor I (FcεRI) expressed on several types of immune cells, including dendritic cells (DCs). Activation of FcεRI on DCs in atopics has been shown to modulate immune responses that potentially contribute to asthma development. However, the extent to which DC subsets differ in FcεRI expression between atopic children with or without asthma is currently not clear. This study aimed to analyse the expression of FcεRI on peripheral blood mononuclear cells (PBMCs) from atopic children with and without asthma, and non-atopic/non-asthmatic age-matched healthy controls. Methods: We performed multiparameter flow cytometry on PBMC from 391 children across three community cohorts and one clinical cohort based in Western Australia. Results: We confirmed expression of FcεRI on basophils, monocytes, plasmacytoid and conventional DCs, with higher proportions of all cell populations expressing FcεRI in atopic compared to non-atopic children. Further, we observed that levels of FcεRI expression were elevated across plasmacytoid and conventional DC as well as basophils in atopic asthmatic compared to atopic non-asthmatic children also after adjusting for serum IgE levels. Conclusion: Our data suggest that the expression pattern of FcεRI on DC and basophils differentiates asthmatic from non-asthmatic atopic children. Given the significant immune modulatory effects observed as a consequence of FcεRI expression, this altered expression pattern is likely to contribute to asthma pathology in children

    The impact of cytokine levels in young South African children with and without HIV-associated acute lower respiratory infections

    Get PDF
    Altered host immune responses are considered to play a key role in the pathogenesis of acute lower respiratory infections (ALRI). The existing literature on cytokine responses in ALRI is largely focussed on adults from developed countries and there are few reports describing the role of cytokines in childhood ALRI, particularly in African or human immunodeficiency virus (HIV)-infected populations. To measure systemic cytokine levels in blood plasma from young South African children with and without ALRI and with and without HIV to determine associations between cytokine responses and disease status and respiratory viral identification. Blood plasma samples were collected from 106 hospitalized ALRI cases and 54 non-ALRI controls less than 2 years of age. HIV status was determined. Blood plasma concentrations of 19 cytokines, 7 chemokines, and 4 growth factors (epidermal growth factor, fibroblast growth factor-basic, hepatocyte growth factor, and vascular endothelial) were measured using The Human Cytokine 30-Plex Panel. Common respiratory viruses were identified by PCR. Mean cytokine concentrations for G-CSF, interferon (IFN)-γ, interleukin (IL)-5, and MCP-1 were significantly higher in ALRI cases than in nonrespiratory controls. Within the ALRI cases, several cytokines were higher in children with a virus compared with children without a virus. Mean cytokine concentrations for IFN-α, IFN-γ, IL-4, IL-5, IL-13, tumour necrosis factor-α, and MIP-1α were significantly lower in HIV-infected cases than in HIV-uninfected cases, while IP-10 and monokine induced by interferon-γ were significantly higher in HIV-infected cases than in HIV-uninfected cases. Certain cytokines are likely to play an important role in the host immune response to ALRI. HIV-infected children have impaired inflammatory responses to respiratory infections compared with HIV-uninfected children.The Alan King Westcare Project grant by the Lung Institute of Western Australia, a National Health and Medical Research Council (NHMRC) project grant and the National Research Foundation South Africa.http://wileyonlinelibrary.com/journal/jmv2021-12-14hj2021Paediatrics and Child Healt

    Basophil levels in PBMC population during childhood acute wheeze/asthma are associated with future exacerbations

    Get PDF
    Our data suggest that a basophil level above 0.18% of the PBMC population during an acute respiratory exacerbation is associated with an increased risk for future exacerbations in children with asthma and/or wheeze

    Enhanced Neutralizing Antibody Responses to Rhinovirus C and Age-Dependent Patterns of Infection

    Get PDF
    Knowledge of prevalent RV types, antibody responses, and populations at risk based on age and genetics may guide the development of vaccines or other novel therapies against this important respiratory pathogen.Longitudinal data from the Childhood Origins of ASThma (COAST) birth cohort study were analyzed to determine relationships between age and RV-C infections. Neutralizing antibodies specific for rhinovirus A (RV-A) and RV-C (3 types each) were determined using a novel polymerase chain reaction-based assay. We pooled data from 14 study cohorts in the United States, Finland, and Australia and used mixed-effects logistic regression to identify factors related to the proportion of RV-C versus RV-A detection.In COAST, RV-A and RV-C infections were similarly common in infancy, while RV-C was detected much less often than RV-A during both respiratory illnesses and scheduled surveillance visits (pRhinovirus C (RV-C) can cause asymptomatic infection and respiratory illnesses ranging from the common cold to severe wheezing.To identify how age and other individual-level factors are associated with susceptibility to RV-C illnesses.</div

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Personal Network Inference Unveils Heterogeneous Immune Response Patterns to Viral Infection in Children with Acute Wheezing

    No full text
    Human rhinovirus (RV)-induced exacerbations of asthma and wheeze are a major cause of emergency room presentations and hospital admissions among children. Previous studies have shown that immune response patterns during these exacerbations are heterogeneous and are characterized by the presence or absence of robust interferon responses. Molecular phenotypes of asthma are usually identified by cluster analysis of gene expression levels. This approach however is limited, since genes do not exist in isolation, but rather work together in networks. Here, we employed personal network inference to characterize exacerbation response patterns and unveil molecular phenotypes based on variations in network structure. We found that personal gene network patterns were dominated by two major network structures, consisting of interferon-response versus FCER1G-associated networks. Cluster analysis of these structures divided children into subgroups, differing in the prevalence of atopy but not RV species. These network structures were also observed in an independent cohort of children with virus-induced asthma exacerbations sampled over a time course, where we showed that the FCER1G-associated networks were mainly observed at late time points (days four&ndash;six) during the acute illness. The ratio of interferon- and FCER1G-associated gene network responses was able to predict recurrence, with low interferon being associated with increased risk of readmission. These findings demonstrate the applicability of personal network inference for biomarker discovery and therapeutic target identification in the context of acute asthma which focuses on variations in network structure

    TLR4 Polymorphisms Mediate Impaired Responses to Respiratory Syncytial Virus and Lipopolysaccharide1

    No full text
    Severe bronchiolitis following respiratory syncytial virus (RSV) infection occurs in only a small subset of infected infants and the basis for variations in disease severity is not understood. Innate immune responses to RSV are mediated by TLR-4, and the (299)Gly and (399)Ile alleles of the TLR4 gene have been linked epidemiologically with increased severity of RSV disease in children. We hypothesized that cellular immune responses to RSV mediated by these variant forms of the receptor are defective relative to responses mediated via the common form of the receptor. Human bronchial epithelial cells were transfected with TLR4 constructs encoding the common TLR4 gene sequence ((299)Asp/(399)Thr), or the (299)Gly or (399)Ile alleles, and cytokine responses to in vitro RSV challenge were analyzed in the different transfected cells. Follow-up studies compared RSV-induced responses in PBMC from children expressing these same TLR4 genotypes. Human bronchial epithelial expressing (299)GIy or (399)Ile displayed normal levels of intracellular TLR4 but failed to efficiently translocate the receptor to the cell surface. This was associated with reduced NF-kappa B signaling post-TLR4 engagement, reduced production of IFNs, IL-8, IL-10, IL-12p35, IL-18, and CCL8, and the absence of acute-phase TNF-alpha. These findings were mirrored by blunted PBMC responses to RSV in children expressing the same TLR4 variants. Compromised first-line defense against RSV at the airway-epithelial surface of children expressing these TLR4 variants may thus confer increased susceptibility to severe infections with this virus
    corecore