38 research outputs found

    Is Cardiorespiratory Fitness Related to Cardiometabolic Health and All-Cause Mortality Risk in Patients with Coronary Heart Disease? A CARE CR Study

    Get PDF
    Background: Higher cardiorespiratory fitness (CRF) is associated with lower morbidity and mortality in patients with coronary heart disease (CHD). The mechanisms for this are not fully understood. A more favourable cardiometabolic risk factor profile may be responsible, however few studies have comprehensively evaluated cardiometabolic risk factors in relation to CRF, among patients with CHD. Objective: To explore differences in cardiometabolic risk and 5-year all-cause mortality risk in patients with CHD who have low, moderate, and high levels of CRF. Methods: Patients with CHD underwent maximal cardiopulmonary exercise testing (CPET), echocardiogram, carotid intima-media thickness measurement, spirometry, and dual X-ray absorptiometry assessment. Full blood count, biochemical lipid pro-files, high sensitivity (hs)- C-reactive protein and NT-proBNP were analysed. Pa-tients were defined as having low, moderate, or high CRF based on established prognostic thresholds. Results: 70 patients with CHD (age 63.1 ± 10.0 years, 86% male) were recruited. Patients with low CRF had a lower ventilatory anaerobic threshold, peak oxygen pulse, post-exercise heart rate recovery and poor ventilatory efficiency. The low CRF group also had higher NT pro-BNP, hs-CRP, non-fasting glucose concentrations and lower haemoglobin and haematocrit. Five-year mortality risk (CALIBER risk score) was also greatest in the lowest CRF group (14.9%). Conclusion: Practitioners should interpret low CRF as an important clinical risk factor associated with adverse cardiometabolic health and poor prognosis. Study registry; researchregistry.com (researchregistry3548). Key Words: Coronary Heart Disease, Cardiac Rehabilitation, Cardiometabolic Health, Exercise Training, Atherosclerosis, VO2peak, Maximal Cardiopulmonary Exercise Testing, Caliber 5-year ris

    Global population structure and genotyping framework for genomic surveillance of the major dysentery pathogen, Shigella sonnei

    No full text
    Shigella sonnei is the most common agent of shigellosis in high-income countries, and causes a significant disease burden in low- and middle-income countries. Antimicrobial resistance is increasingly common in all settings. Whole genome sequencing (WGS) is increasingly utilised for S. sonnei outbreak investigation and surveillance, but comparison of data between studies and labs is challenging. Here, we present a genomic framework and genotyping scheme for S. sonnei to efficiently identify genotype and resistance determinants from WGS data. The scheme is implemented in the software package Mykrobe and tested on thousands of genomes. Applying this approach to analyse >4,000 S. sonnei isolates sequenced in public health labs in three countries identified several common genotypes associated with increased rates of ciprofloxacin resistance and azithromycin resistance, confirming intercontinental spread of highly-resistant S. sonnei clones and demonstrating the genomic framework can facilitate monitoring the spread of resistant clones, including those that have recently emerged, at local and global scales

    Metal nanoparticles: The protective shield against virus infection.

    No full text
    Re-emergence of resistance in different pathogens including viruses are the major cause of human disease and death, which is posing a serious challenge to the medical, pharmaceutical and biotechnological sectors. Though many efforts have been made to develop drug and vaccines against re-emerging viruses, researchers are continuously engaged in the development of novel, cheap and broad-spectrum antiviral agents, not only to fight against viruses but also to act as a protective shield against pathogens attack. Current advancement in nanotechnology provides a novel platform for the development of potential and effective agents by modifying the materials at nanolevel with remarkable physicochemical properties, high surface area to volume ratio and increased reactivity. Among metal nanoparticles, silver nanoparticles have strong antibacterial, antifungal and antiviral potential to boost the host immunity against pathogen attack. Nevertheless, the interaction of silver nanoparticles with viruses is a largely unexplored field. The present review discusses antiviral activity of the metal nanoparticles, especially the mechanism of action of silver nanoparticles, against different viruses such HSV, HIV, HBV, MPV, RSV, etc. It is also focused on how silver nanoparticles can be used in therapeutics by considering their cytotoxic level, to avoid human and environmental risks
    corecore