65 research outputs found
Timed model-based programming : executable specifications for robust mission-critical sequences
Thesis (Sc. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2003.Includes bibliographical references (p. 195-204).There is growing demand for high-reliability embedded systems that operate robustly and autonomously in the presence of tight real-time constraints. For robotic spacecraft, robust plan execution is essential during time-critical mission sequences, due to the very short time available for recovery from anomalies. Traditional approaches to encoding these sequences can lead to brittle behavior under off-nominal execution conditions, due to the high level of complexity in the control specification required to manage the complex spacecraft system interactions. This work describes timed model-based programming, a novel approach for encoding and robustly executing mission-critical spacecraft sequences. The timed model-based programming approach addresses the issues of sequence complexity and unanticipated low-level system interactions by allowing control programs to directly read or write "hidden" states of the plant, that is, states that are not directly observable or controllable. It is then the responsibility of the program's execution kernel to map between hidden states and the plant sensors and control variables. This mapping is performed automatically by a deductive controller using a common-sense plant model, freeing the programmer from the error-prone process of reasoning through a complex set of interactions under a range of possible failure situations. Time is central to the execution of mission-critical sequences; a robust executive must consider time in its control and behavior models, in addition to reactively managing complexity.(cont.) In timed model-based programming, control programs express goals and constraints in terms of both system state and time. Plant models capture the underlying behavior of the system components, including nominal and off-nominal modes, probabilistic transitions, and timed effects such as state transition latency. The contributions of this work are threefold. First, a semantic specification of the timed model-based programming approach is provided. The execution semantics of a timed model-based program are defined in terms of legal state evolutions of a physical plant, represented as a factored Partially Observable Semi-Markov Decision Process. The second contribution is the definition of graphical and textual languages for encoding timed control programs and plant models. The adoption of a visual programming paradigm allows timed model-based programs to be specified and readily inspected by the systems engineers in charge of designing the mission-critical sequences. The third contribution is the development of a Timed Model-based Executive, which takes as input a timed control program and executes it, using timed plant models to track states, diagnose faults and generate control actions. The Timed Model-based Executive has been implemented and demonstrated on a representative spacecraft scenario for Mars entry, descent and landing.by Michel Donald Ingham.Sc.D
Microdynamics and thermal snap response of deployable space structures
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 1998.Includes bibliographical references (p. 141-144).by Michel D. Ingham.M.S
Constrained Risk-Averse Markov Decision Processes
We consider the problem of designing policies for Markov decision processes (MDPs) with dynamic coherent risk objectives and constraints. We begin by formulating the problem in a Lagrangian framework. Under the assumption that the risk objectives and constraints can be represented by a Markov risk transition mapping, we propose an optimization-based method to synthesize Markovian policies that lower-bound the constrained risk-averse problem. We demonstrate that the formulated optimization problems are in the form of difference convex programs (DCPs) and can be solved by the disciplined convex-concave programming (DCCP) framework. We show that these results generalize linear programs for constrained MDPs with total discounted expected costs and constraints. Finally, we illustrate the effectiveness of the proposed method with numerical experiments on a rover navigation problem involving conditional-value-at-risk (CVaR) and entropic-value-at-risk (EVaR) coherent risk measures
Partially Observable Games for Secure Autonomy
Technology development efforts in autonomy and cyber-defense have been evolving independently of each other, over the past decade. In this paper, we report our ongoing effort to integrate these two presently distinct areas into a single framework. To this end, we propose the two-player partially observable stochastic game formalism to capture both high-level autonomous mission planning under uncertainty and adversarial decision making subject to imperfect information. We show that synthesizing sub-optimal strategies for such games is possible under finite-memory assumptions for both the autonomous decision maker and the cyber-adversary. We then describe an experimental testbed to evaluate the efficacy of the proposed framework
Partially Observable Games for Secure Autonomy
Technology development efforts in autonomy and cyber-defense have been evolving independently of each other, over the past decade. In this paper, we report our ongoing effort to integrate these two presently distinct areas into a single framework. To this end, we propose the two-player partially observable stochastic game formalism to capture both high-level autonomous mission planning under uncertainty and adversarial decision making subject to imperfect information. We show that synthesizing sub-optimal strategies for such games is possible under finite-memory assumptions for both the autonomous decision maker and the cyber-adversary. We then describe an experimental testbed to evaluate the efficacy of the proposed framework
Risk-Averse Planning Under Uncertainty
We consider the problem of designing policies for partially observable Markov decision processes (POMDPs) with dynamic coherent risk objectives. Synthesizing risk-averse optimal policies for POMDPs requires infinite memory and thus undecidable. To overcome this difficulty, we propose a method based on bounded policy iteration for designing stochastic but finite state (memory) controllers, which takes advantage of standard convex optimization methods. Given a memory budget and optimality criterion, the proposed method modifies the stochastic finite state controller leading to sub-optimal solutions with lower coherent risk
Partially Observable Games for Secure Autonomy
Technology development efforts in autonomy and cyber-defense have been
evolving independently of each other, over the past decade. In this paper, we
report our ongoing effort to integrate these two presently distinct areas into
a single framework. To this end, we propose the two-player partially observable
stochastic game formalism to capture both high-level autonomous mission
planning under uncertainty and adversarial decision making subject to imperfect
information. We show that synthesizing sub-optimal strategies for such games is
possible under finite-memory assumptions for both the autonomous decision maker
and the cyber-adversary. We then describe an experimental testbed to evaluate
the efficacy of the proposed framework
Engineering Resilient Space Systems
Several distinct trends will influence space exploration missions in the next decade. Destinations are
becoming more remote and mysterious, science questions more sophisticated, and, as mission experience
accumulates, the most accessible targets are visited, advancing the knowledge frontier to more difficult,
harsh, and inaccessible environments. This leads to new challenges including: hazardous conditions that
limit mission lifetime, such as high radiation levels surrounding interesting destinations like Europa or
toxic atmospheres of planetary bodies like Venus; unconstrained environments with navigation hazards,
such as free-floating active small bodies; multielement missions required to answer more sophisticated
questions, such as Mars Sample Return (MSR); and long-range missions, such as Kuiper belt exploration,
that must survive equipment failures over the span of decades. These missions will need to be successful
without a priori knowledge of the most efficient data collection techniques for optimum science return.
Science objectives will have to be revised ‘on the fly’, with new data collection and navigation decisions
on short timescales.
Yet, even as science objectives are becoming more ambitious, several critical resources remain
unchanged. Since physics imposes insurmountable light-time delays, anticipated improvements to the
Deep Space Network (DSN) will only marginally improve the bandwidth and communications cadence to
remote spacecraft. Fiscal resources are increasingly limited, resulting in fewer flagship missions, smaller
spacecraft, and less subsystem redundancy. As missions visit more distant and formidable locations, the
job of the operations team becomes more challenging, seemingly inconsistent with the trend of shrinking
mission budgets for operations support. How can we continue to explore challenging new locations
without increasing risk or system complexity?
These challenges are present, to some degree, for the entire Decadal Survey mission portfolio, as
documented in Vision and Voyages for Planetary Science in the Decade 2013–2022 (National Research
Council, 2011), but are especially acute for the following mission examples, identified in our recently
completed KISS Engineering Resilient Space Systems (ERSS) study:
1. A Venus lander, designed to sample the atmosphere and surface of Venus, would have to perform
science operations as components and subsystems degrade and fail;
2. A Trojan asteroid tour spacecraft would spend significant time cruising to its ultimate destination
(essentially hibernating to save on operations costs), then upon arrival, would have to act as its
own surveyor, finding new objects and targets of opportunity as it approaches each asteroid,
requiring response on short notice; and
3. A MSR campaign would not only be required to perform fast reconnaissance over long distances
on the surface of Mars, interact with an unknown physical surface, and handle degradations and
faults, but would also contain multiple components (launch vehicle, cruise stage, entry and
landing vehicle, surface rover, ascent vehicle, orbiting cache, and Earth return vehicle) that
dramatically increase the need for resilience to failure across the complex system.
The concept of resilience and its relevance and application in various domains was a focus during the
study, with several definitions of resilience proposed and discussed. While there was substantial variation
in the specifics, there was a common conceptual core that emerged—adaptation in the presence of
changing circumstances. These changes were couched in various ways—anomalies, disruptions,
discoveries—but they all ultimately had to do with changes in underlying assumptions. Invalid
assumptions, whether due to unexpected changes in the environment, or an inadequate understanding of
interactions within the system, may cause unexpected or unintended system behavior. A system is
resilient if it continues to perform the intended functions in the presence of invalid assumptions.
Our study focused on areas of resilience that we felt needed additional exploration and integration,
namely system and software architectures and capabilities, and autonomy technologies. (While also an
important consideration, resilience in hardware is being addressed in multiple other venues, including
2
other KISS studies.) The study consisted of two workshops, separated by a seven-month focused study
period. The first workshop (Workshop #1) explored the ‘problem space’ as an organizing theme, and the
second workshop (Workshop #2) explored the ‘solution space’. In each workshop, focused discussions
and exercises were interspersed with presentations from participants and invited speakers.
The study period between the two workshops was organized as part of the synthesis activity during the
first workshop. The study participants, after spending the initial days of the first workshop discussing the
nature of resilience and its impact on future science missions, decided to split into three focus groups,
each with a particular thrust, to explore specific ideas further and develop material needed for the second
workshop. The three focus groups and areas of exploration were:
1. Reference missions: address/refine the resilience needs by exploring a set of reference missions
2. Capability survey: collect, document, and assess current efforts to develop capabilities and
technology that could be used to address the documented needs, both inside and outside NASA
3. Architecture: analyze the impact of architecture on system resilience, and provide principles and
guidance for architecting greater resilience in our future systems
The key product of the second workshop was a set of capability roadmaps pertaining to the three
reference missions selected for their representative coverage of the types of space missions envisioned for
the future. From these three roadmaps, we have extracted several common capability patterns that would
be appropriate targets for near-term technical development: one focused on graceful degradation of
system functionality, a second focused on data understanding for science and engineering applications,
and a third focused on hazard avoidance and environmental uncertainty. Continuing work is extending
these roadmaps to identify candidate enablers of the capabilities from the following three categories:
architecture solutions, technology solutions, and process solutions.
The KISS study allowed a collection of diverse and engaged engineers, researchers, and scientists to think
deeply about the theory, approaches, and technical issues involved in developing and applying resilience
capabilities. The conclusions summarize the varied and disparate discussions that occurred during the
study, and include new insights about the nature of the challenge and potential solutions:
1. There is a clear and definitive need for more resilient space systems. During our study period,
the key scientists/engineers we engaged to understand potential future missions confirmed the
scientific and risk reduction value of greater resilience in the systems used to perform these
missions.
2. Resilience can be quantified in measurable terms—project cost, mission risk, and quality of
science return. In order to consider resilience properly in the set of engineering trades performed
during the design, integration, and operation of space systems, the benefits and costs of resilience
need to be quantified. We believe, based on the work done during the study, that appropriate
metrics to measure resilience must relate to risk, cost, and science quality/opportunity. Additional
work is required to explicitly tie design decisions to these first-order concerns.
3. There are many existing basic technologies that can be applied to engineering resilient space
systems. Through the discussions during the study, we found many varied approaches and
research that address the various facets of resilience, some within NASA, and many more
beyond. Examples from civil architecture, Department of Defense (DoD) / Defense Advanced
Research Projects Agency (DARPA) initiatives, ‘smart’ power grid control, cyber-physical
systems, software architecture, and application of formal verification methods for software were
identified and discussed. The variety and scope of related efforts is encouraging and presents
many opportunities for collaboration and development, and we expect many collaborative
proposals and joint research as a result of the study.
4. Use of principled architectural approaches is key to managing complexity and integrating
disparate technologies. The main challenge inherent in considering highly resilient space
systems is that the increase in capability can result in an increase in complexity with all of the
3
risks and costs associated with more complex systems. What is needed is a better way of
conceiving space systems that enables incorporation of capabilities without increasing
complexity. We believe principled architecting approaches provide the needed means to convey a
unified understanding of the system to primary stakeholders, thereby controlling complexity in
the conception and development of resilient systems, and enabling the integration of disparate
approaches and technologies. A representative architectural example is included in Appendix F.
5. Developing trusted resilience capabilities will require a diverse yet strategically directed
research program. Despite the interest in, and benefits of, deploying resilience space systems, to
date, there has been a notable lack of meaningful demonstrated progress in systems capable of
working in hazardous uncertain situations. The roadmaps completed during the study, and
documented in this report, provide the basis for a real funded plan that considers the required
fundamental work and evolution of needed capabilities.
Exploring space is a challenging and difficult endeavor. Future space missions will require more
resilience in order to perform the desired science in new environments under constraints of development
and operations cost, acceptable risk, and communications delays. Development of space systems with
resilient capabilities has the potential to expand the limits of possibility, revolutionizing space science by
enabling as yet unforeseen missions and breakthrough science observations.
Our KISS study provided an essential venue for the consideration of these challenges and goals.
Additional work and future steps are needed to realize the potential of resilient systems—this study
provided the necessary catalyst to begin this process
- …