52 research outputs found

    Age-Dependent Decline in Mouse Lung Regeneration with Loss of Lung Fibroblast Clonogenicity and Increased Myofibroblastic Differentiation

    Get PDF
    While aging leads to a reduction in the capacity for regeneration after pneumonectomy (PNX) in most mammals, this biological phenomenon has not been characterized over the lifetime of mice. We measured the age-specific (3, 9, 24 month) effects of PNX on physiology, morphometry, cell proliferation and apoptosis, global gene expression, and lung fibroblast phenotype and clonogenicity in female C57BL6 mice. The data show that only 3 month old mice were fully capable of restoring lung volumes by day 7 and total alveolar surface area by 21 days. By 9 months, the rate of regeneration was slower (with incomplete regeneration by 21 days), and by 24 months there was no regrowth 21 days post-PNX. The early decline in regeneration rate was not associated with changes in alveolar epithelial cell type II (AECII) proliferation or apoptosis rate. However, significant apoptosis and lack of cell proliferation was evident after PNX in both total cells and AECII cells in 24 mo mice. Analysis of gene expression at several time points (1, 3 and 7 days) post-PNX in 9 versus 3 month mice was consistent with a myofibroblast signature (increased Tnc, Lox1, Col3A1, Eln and Tnfrsf12a) and more alpha smooth muscle actin (αSMA) positive myofibroblasts were present after PNX in 9 month than 3 month mice. Isolated lung fibroblasts showed a significant age-dependent loss of clonogenicity. Moreover, lung fibroblasts isolated from 9 and 17 month mice exhibited higher αSMA, Col3A1, Fn1 and S100A expression, and lower expression of the survival gene Mdk consistent with terminal differentiation. These data show that concomitant loss of clonogenicity and progressive myofibroblastic differentiation contributes to the age-dependent decline in the rate of lung regeneration

    Surveillance transbronchial lung biopsies: Implication for survival after lung transplantation

    Get PDF
    AbstractObjectives: We wished to determine whether early rejection after lung transplantation as assessed by surveillance transbronchial biopsy predicts for survival. Methods: Between 1990 and 1997, 96 consecutive patients had lung transplantation: 89 had a minimum 1-month follow-up. For 71 consecutive patients we have 1-year follow-up and for 69 patients we have the results of the first 3 biopsies. Cytomegalovirus status, bronchiolitis obliterans prevalence, and use of total lymphoid irradiation are noted. Biopsies were done at 1 week and 1, 3, and 6 months. Standard immunosuppression consisted of induction antilymphocyte globulin and high-dose methylprednisolone induction for 1 week and standard maintenance triple therapy. Acute rejection treatment was with pulse methylprednisolone. Bronchiolitis obliterans syndrome was treated with total lymphoid irradiation and a change to tacrolimus and mycophenolate. Blinded grading using International Society for Heart and Lung Transplantation classification was done retrospectively. Results: Survival at 1 month and 1, 2, and 3 years for the 96-patient cohort with 1-year follow-up was 93%, 74%, 62%, and 56%. Survival was not significantly different for subsets with rejection on any combination of the first 3 biopsies (1/3, 2/3, 3/3) or absence of rejection on the first 3 biopsies. Ninety-one positive biopsy results were graded. Eighteen of 71 patients had one or more moderate or severe rejection episodes without survival difference relative to the others. There was no statistically significant association between acute rejection on the first 3 surveillance biopsy results and bronchiolitis obliterans. Conclusions: Intensive induction and maintenance immunotherapy with surveillance transbronchial biopsies and aggressive treatment of acute rejection is associated with a survival similar to that of patients without early acute rejection. This regimen appears to uncouple the association between early acute rejection and bronchiolitis obliterans. Further study may elucidate this mechanism. (J Thorac Cardiovasc Surg 2000;119:27-38

    Amplitude-modulated Ventilation

    No full text
    • …
    corecore