1 research outputs found

    Temporal Trends of PCDD/Fs in Baltic Sea Sediment Cores Covering the 20th Century

    No full text
    The pollution trend of polychlorinated dibenzo-<i>p</i>-dioxins and dibenzofurans (PCDD/Fs) in the Baltic Sea region was studied based on depth profiles of PCDD/Fs in sediment cores collected from six offshore areas, eight coastal sites impacted by industrial/urban emissions, and one coastal reference site. A general trend was observed for the offshore and coastal reference sites with substantial increase in PCDD/F concentrations in the mid–late 1970s and peak levels during 1985–2002. The overall peak year for PCDD/Fs in Baltic Sea offshore areas was estimated (using spline-fit modeling) to 1994 ± 5 years, and a half-life in sediments was estimated at 29 ± 11 years. For the industrial/urban impacted coastal sites, the temporal trend was more variable with peak years occurring 1–2 decades earlier compared to offshore areas. The substantial reductions from peak levels (38 ± 11% and 81 ± 12% in offshore and coastal areas, respectively) reflect domestic and international actions taken for reduction of the release of PCDD/Fs to the environment. The modeled overall half-life and reductions of PCDD/Fs in offshore Baltic Sea sediment correspond well to both PCDD/F trends in European lakes without any known direct PCDD/F sources (half-lives 30 and 32 years), and previously modeled reduction in atmospheric deposition of PCDD/Fs to the Baltic Sea since 1990. These observations support previous findings of a common diffuse source, such as long-range air transport of atmospheric emissions, as the prime source of PCDD/Fs to the Baltic Sea region. The half-life of PCDD/Fs in Baltic Sea offshore sediments was estimated to be approximately 2 and 4–6 times longer than in semirural and urban European air, respectively. This study highlights the need for further international actions to reduce the levels of PCDD/Fs in Baltic Sea air specifically and in European air in general
    corecore