14 research outputs found

    Nanobody based dual specific CARs

    Get PDF
    Recent clinical trials have shown that adoptive chimeric antigen receptor (CAR) T cell therapy is a very potent and possibly curative option in the treatment of B cell leukemias and lymphomas. However, targeting a single antigen may not be sufficient, and relapse due to the emergence of antigen negative leukemic cells may occur. A potential strategy to counter the outgrowth of antigen escape variants is to broaden the specificity of the CAR by incorporation of multiple antigen recognition domains in tandem. As a proof of concept, we here describe a bispecific CAR in which the single chain variable fragment (scFv) is replaced by a tandem of two single-antibody domains or nanobodies (nanoCAR). High membrane nanoCAR expression levels are observed in retrovirally transduced T cells. NanoCARs specific for CD20 and HER2 induce T cell activation, cytokine production and tumor lysis upon incubation with transgenic Jurkat cells expressing either antigen or both antigens simultaneously. The use of nanobody technology allows for the production of compact CARs with dual specificity and predefined affinity

    T-cells with a single tumor antigen-specific T-cell receptor can be generated in vitro from clinically relevant stem cell sources

    Get PDF
    Chimeric antigen receptor (CAR) T-cells have shown great promise in the treatment of B-cell malignancies. For acute myeloid leukemia (AML), however, the optimal target surface antigen has yet to be discovered. Alternatively, T-cell receptor (TCR)-redirected T-cells target intracellular antigens, marking a broader territory of available target antigens. Currently, adoptive TCR T-cell therapy uses peripheral blood lymphocytes for the introduction of a transgenic TCR. However, this can cause graft-versus-host disease, due to mispairing of introduced and endogenous TCR chains. Therefore, we started from hematopoietic stem and progenitor cells (HSPC), that do not express a TCR yet, isolated from healthy donors, patients in remission after chemotherapy and AML patients at diagnosis. Using the OP9-DL1 in vitro co-culture system and agonist selection, TCR-transduced HSPC develop into mature tumor antigen-specific T-cells with only one TCR. We show here that this approach is feasible with adult HSPC from clinically relevant sources, albeit with slower maturation and lower cell yield compared to cord blood HSPC. Moreover, cryopreservation of HSPC does not have an effect on cell numbers or functionality of the generated T-cells. In conclusion, we show here that it is feasible to generate TA-specific T-cells from HSPC from adult healthy donors and patients and we believe these T-cells could be of use as a very valuable form of patient-tailored T-cell immunotherapy

    Human thymic CD10+ PD-1+ intraepithelial lymphocyte precursors acquire interleukin-15 responsiveness at the CD1a– CD95+ CD28– CCR7– developmental stage

    Get PDF
    Human thymic CD8αα+ CD10+ PD-1+ αβ T cells selected through early agonist selection have been proposed as the putative thymic precursors of the human CD8αα+ intestinal intraepithelial lymphocytes (IELs). However, the progeny of these thymic precursor cells in human blood or tissues has not yet been characterized. Here, we studied the phenotypical and transcriptional differentiation of the thymic IEL precursor (IELp) lineage upon in vitro exposure to cytokines prominent in the peripheral tissues such as interleukin-15 (IL-15) and the inflammatory cytokines interleukin-12 (IL-12) and interleukin-18 (IL-18). We showed that only the CD1a− fraction of the CD10+ PD-1+ IELp population was able to proliferate with IL-15, suggesting that this subset had acquired functionality. These cells downregulated PD-1 expression and completely lost CD10 expression, whereas other surface markers such as CD95 and CXCR3 remained highly expressed. RNA-seq analysis of the IL-15-cultured cells clearly showed induction of innate-like and effector genes. Induction of the cytotoxic machinery by the CD10+ PD-1+ population was acquired in the presence of IL-15 and was further augmented by inflammatory cytokines. Our data suggest that only the CD1a− CD10+ PD-1+ population exits the thymus and survives in the periphery. Furthermore, PD-1 and CD10 expression is not an intrinsic property of this lineage, but rather characterizes a transient stage in differentiation. CD95 and CXCR3 expression combined with the absence of CD28, CCR7, and CD6 expression might be more powerful markers to define this lineage in the periphery

    Rapid and effective generation of nanobody based CARs using PCR and Gibson Assembly

    Get PDF
    Recent approval of chimeric antigen receptor (CAR) T cell therapy by the European Medicines Agency (EMA)/Federal and Drug Administration (FDA) and the remarkable results of CAR T clinical trials illustrate the curative potential of this therapy. While CARs against a multitude of different antigens are being developed and tested (pre)clinically, there is still a need for optimization. The use of single -chain variable fragments (scFvs) as targeting moieties hampers the quick generation of functional CARs and could potentially limit the efficacy. Instead, nanobodies may largely circumvent these difficulties. We used an available nanobody library generated after immunization of llamas against Cluster of Differentiation (CD) 20 through DNA vaccination or against the ectodomain of CD33 using soluble protein. The nanobody specific sequences were amplified by PCR and cloned by Gibson Assembly into a retroviral vector containing two different second -generation CAR constructs. After transduction in T cells, we observed high cell membrane nanoCAR expression in all cases. Following stimulation of nanoCAR-expressing T cells with antigen-positive cell lines, robust T cell activation, cytokine production and tumor cell lysis both in vitro and in vivo was observed. The use of nanobody technology in combination with PCR and Gibson Assembly allows for the rapid and effective generation of compact CARs

    The Wiskott–Aldrich syndrome protein is required for positive selection during T-cell lineage differentiation

    Get PDF
    The Wiskott–Aldrich syndrome (WAS) is an X-linked primary immune deficiency caused by a mutation in the WAS gene. This leads to altered or absent WAS protein (WASp) expression and function resulting in thrombocytopenia, eczema, recurrent infections, and autoimmunity. In T cells, WASp is required for immune synapse formation. Patients with WAS show reduced numbers of peripheral blood T lymphocytes and an altered T-cell receptor repertoire. In vitro, their peripheral T cells show decreased proliferation and cytokine production upon aCD3/aCD28 stimulation. It is unclear whether these T-cell defects are acquired during peripheral activation or are, in part, generated during thymic development. Here, we assessed the role of WASp during T-cell differentiation using artificial thymic organoid cultures and in the thymus of humanized mice. Although CRISPR/Cas9 WAS knockout hematopoietic stem and progenitor cells (HSPCs) rearranged the T-cell receptor and differentiated to T-cell receptor (TCR)+ CD4+ CD8+ double-positive (DP) cells similar to wild-type HSPCs, a partial defect in the generation of CD8 single-positive (SP) cells was observed, suggesting that WASp is involved in their positive selection. TCR repertoire analysis of the DP and CD8+ SP population, however, showed a polyclonal repertoire with no bias toward autoreactivity. To our knowledge, this is the first study of the role of WASp in human T-cell differentiation and on TCR repertoire generation

    Dendritic cell-based immunotherapy in lung cancer

    No full text
    Lung cancer remains the leading cause of cancer-related death worldwide. The advent of immune checkpoint inhibitors has led to a paradigm shift in the treatment of metastatic non-small cell and small cell lung cancer. However, despite prolonged overall survival, only a minority of the patients derive clinical benefit from these treatments suggesting that the full anti-tumoral potential of the immune system is not being harnessed yet. One way to overcome this problem is to combine immune checkpoint blockade with different strategies aimed at inducing or restoring cellular immunity in a tumor-specific, robust, and durable way. Owing to their unique capacity to initiate and regulate T cell responses, dendritic cells have been extensively explored as tools for immunotherapy in many tumors, including lung cancer. In this review, we provide an update on the nearly twenty years of experience with dendritic cell-based immunotherapy in lung cancer. We summarize the main results from the early phase trials and give an overview of the future perspectives within this field

    An accelerated, clinical-grade protocol to generate high yields of type 1-polarizing messenger RNA loaded dendritic cells for cancer vaccination

    No full text
    Background: Many efforts have been devoted to improve the performance of dendritic cell (DC) based cancer vaccines. Ideally, a DC vaccine should induce robust type 1 polarized T-cell responses and efficiently expand antigen (Ag)-specific cytotoxic T-cells, while being applicable regardless of patient human leukocyte antigen (HLA) type. Production time should be short, while maximally being good manufacturing practice (GMP) compliant. We developed a method that caters to all of these demands and demonstrated the superiority of the resulting product compared with DCs generated using a well-established "classical" protocol. Methods: Immunomagnetically purified monocytes were cultured in a closed system for 3 days in GMP-compliant serum-free medium and cytokines, and matured for 24 h using monophosphoryl lipid A (MPLA)+ interferon -gamma (IFN-y). Mature DCs were electroporated with messenger RNA (mRNA) encoding full-length antigen and cryopreserved. "Classical" DCs were cultured for 8 days in flasks, with one round of medium and cytokine supplementation, and matured with tumor necrosis factor alpha (TNF-alpha) + prostaglandin E2 (PGE2) during the last 2 days. Results: Four-day MPLA/IFN-y matured DCs were superior to 8-day TNF-alpha/PGE2 matured DCs in terms of yield, co-stimulatory/coinhibitory molecule expression, resilience to electroporation and cryopreservation and type 1 polarizing cytokine and chemokine release after cell thawing. Electroporated and cryopreserved DCs according to our protocol efficiently present epitopes from tumor antigen-encoding mRNA, inducing a strong expansion of antigen-specific CD8+ T-cells with full cytolytic capacity. Conclusion: We demonstrate using a GMP-compliant culture protocol the feasibility of generating high yields of mature DCs in a short time, with a superior immunogenic profile compared with 8-day TNF-alpha/PGE2 matured DCs, and capable of inducing vigorous cytotoxic T-cell responses to antigen from electroporated mRNA. This method is now being applied in our clinical trial program

    Treatment of a patient with severe cytomegalovirus (CMV) infection after haploidentical stem cell transplantation with donor-derived CMV-specific T cells

    No full text
    Objectives: Cytomegalovirus (CMV) infection is one of the most common complications in allogeneic hematopoietic stem cell transplant (allo-HSCT) recipients. The classic antiviral treatments have shown clinical efficacy but are often associated with drug resistance. Reconstitution of CMV-specific cellular immunity is essential in controlling CMV infection; therefore, adoptive transfer of CMV-specific T cells is a promising treatment option. We treated a patient with a multidrug resistant CMV infection after haploidentical HSCT with CMV-specific T cells. Methods: The T cells were derived from the HSCT donor who was CMV seropositive. We generated the T cells by a short-term Good Manufacturing Practice (GMP) grade protocol in which a leukapheresis product of the HSCT donor was stimulated with the immunodominant antigen pp65 and interferon-γ secreting cells were isolated. A total of 5 × 105 T cells were administered to the patient within 30 hours after leukapheresis. Results: The patient was closely monitored for reconstitution of antiviral T cell immunity and viral replication after adoptive T cell transfer. We observed an in vivo expansion of both CD4+ and CD8+ CMV-specific T cells associated with a significant decrease in viral burden and clinical improvement. Conclusion: This case report further supports the feasibility and effectiveness of adoptive donor T cell transfer for the treatment of drug resistant CMV infections after allo-HSCT

    In vitro OP9-DL1 co-culture and subsequent maturation in the presence of IL-21 generates tumor antigen-specific T cells with a favorable less-differentiated phenotype and enhanced functionality

    No full text
    T cell receptor (TCR)-redirected T cells target intracellular antigens such as Wilms' tumor 1 (WT1), a tumor-associated antigen overexpressed in several malignancies, including acute myeloid leukemia (AML). For both chimeric antigen receptor (CAR)- and TCR-redirected T cells, several clinical studies indicate that T cell subsets with a less-differentiated phenotype (e.g. stem cell memory T cells, T-SCM) survive longer and mediate superior anti-tumor effects in vivo as opposed to more terminally differentiated T cells. Cytokines added during in vitro and ex vivo culture of T cells play an important role in driving the phenotype of T cells for adoptive transfer. Using the OP9-DL1 co-culture system, we have shown previously that we are able to generate in vitro, starting from clinically relevant stem cell sources, T cells with a single tumor antigen (TA)-specific TCR. This method circumvents possible TCR chain mispairing and unwanted toxicities that might occur when introducing a TA-specific TCR in peripheral blood lymphocytes. We now show that we are able to optimize our in vitro culture protocol, by adding IL-21 during maturation, resulting in generation of TA-specific T cells with a less-differentiated phenotype and enhanced in vitro anti-tumor effects. We believe the favorable T-SCM-like phenotype of these in vitro generated T cells preludes superior in vivo persistence and anti-tumor efficacy. Therefore, these TA-specific T cells could be of use as a valuable new form of patient-tailored T cell immunotherapy for malignancies for which finding a suitable CAR-T target antigen is challenging, such as AML
    corecore