4 research outputs found

    Data abstractions for decision tree induction

    Get PDF
    AbstractWhen descriptions of data values in a database are too concrete or too detailed, the computational complexity needed to discover useful knowledge from the database will be generally increased. Furthermore, discovered knowledge tends to become complicated. A notion of data abstraction seems useful to resolve this kind of problems, as we obtain a smaller and more general database after the abstraction, from which we can quickly extract more abstract knowledge that is expected to be easier to understand. In general, however, since there exist several possible abstractions, we have to carefully select one according to which the original database is generalized. An inadequate selection would make the accuracy of extracted knowledge worse.From this point of view, we propose in this paper a method of selecting an appropriate abstraction from possible ones, assuming that our task is to construct a decision tree from a relational database. Suppose that, for each attribute in a relational database, we have a class of possible abstractions for the attribute values. As an appropriate abstraction for each attribute, we prefer an abstraction such that, even after the abstraction, the distribution of target classes necessary to perform our classification task can be preserved within an acceptable error range given by user.By the selected abstractions, the original database can be transformed into a small generalized database written in abstract values. Therefore, it would be expected that, from the generalized database, we can construct a decision tree whose size is much smaller than one constructed from the original database. Furthermore, such a size reduction can be justified under some theoretical assumptions. The appropriateness of abstraction is precisely defined in terms of the standard information theory. Therefore, we call our abstraction framework Information Theoretical Abstraction.We show some experimental results obtained by a system ITA that is an implementation of our abstraction method. From those results, it is verified that our method is very effective in reducing the size of detected decision tree without making classification errors so worse

    Genome-wide association study for subclinical atherosclerosis in major arterial territories in the NHLBI's Framingham Heart Study

    No full text
    Abstract Introduction Subclinical atherosclerosis (SCA) measures in multiple arterial beds are heritable phenotypes that are associated with increased incidence of cardiovascular disease. We conducted a genome-wide association study (GWAS) for SCA measurements in the community-based Framingham Heart Study. Methods Over 100,000 single nucleotide polymorphisms (SNPs) were genotyped (Human 100K GeneChip, Affymetrix) in 1345 subjects from 310 families. We calculated sex-specific age-adjusted and multivariable-adjusted residuals in subjects tested for quantitative SCA phenotypes, including ankle-brachial index, coronary artery calcification and abdominal aortic calcification using multi-detector computed tomography, and carotid intimal medial thickness (IMT) using carotid ultrasonography. We evaluated associations of these phenotypes with 70,987 autosomal SNPs with minor allele frequency ≥ 0.10, call rate ≥ 80%, and Hardy-Weinberg p-value ≥ 0.001 in samples ranging from 673 to 984 subjects, using linear regression with generalized estimating equations (GEE) methodology and family-based association testing (FBAT). Variance components LOD scores were also calculated. Results There was no association result meeting criteria for genome-wide significance, but our methods identified 11 SNPs with p -5 by GEE and five SNPs with p -5 by FBAT for multivariable-adjusted phenotypes. Among the associated variants were SNPs in or near genes that may be considered candidates for further study, such as rs1376877 (GEE p ABI2) for maximum internal carotid artery IMT and rs4814615 (FBAT p = 0.000003, located in PCSK2) for maximum common carotid artery IMT. Modest significant associations were noted with various SCA phenotypes for variants in previously reported atherosclerosis candidate genes, including NOS3 and ESR1. Associations were also noted of a region on chromosome 9p21 with CAC phenotypes that confirm associations with coronary heart disease and CAC in two recently reported genome-wide association studies. In linkage analyses, several regions of genome-wide linkage were noted, confirming previously reported linkage of internal carotid artery IMT on chromosome 12. All GEE, FBAT and linkage results are provided as an open-access results resource at http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?id=phs000007. Conclusion The results from this GWAS generate hypotheses regarding several SNPs that may be associated with SCA phenotypes in multiple arterial beds. Given the number of tests conducted, subsequent independent replication in a staged approach is essential to identify genetic variants that may be implicated in atherosclerosis.</p
    corecore