167 research outputs found
Hydrodynamic and aerodynamic breakup of liquid sheets
The effect of hydrodynamic, aerodynamic and liquid surface forces on the mean drop diameter of water sprays that are produced by the breakup of nonswirling and swirling water sheets in quiescent air and in airflows similar to those encountered in gas turbine combustors is investigated. The mean drop diameter is used to characterize fuel sprays and it is a very important factor in determining the performance and exhaust emissions of gas turbine combustors
Agreement between experimental and theoretical effects of nitrogen gas flowrate on liquid jet atomization
Two-phase flows were investigated by using high velocity nitrogen gas streams to atomize small-diameter liquid jets. Tests were conducted primarily in the acceleration-wave regime for liquid jet atomization, where it was found that the loss of droplets due to vaporization had a marked effect on drop size measurements. In addition, four identically designed two-fluid atomizers were fabricated and tested for similarity of spray profiles. A scattered-light scanner was used to measure a characteristic drop diameter, which was correlated with nitrogen gas flowrate. The exponent of 1.33 for nitrogen gas flowrate is identical to that predicted by atomization theory for liquid jet breakup in the acceleration-wave regime. This is higher than the value of 1.2 which was previously obtained at a sampling distance of 4.4 cm downstream of the atomizer. The difference is attributed to the fact that drop-size measurements obtained at a 2.2 cm sampling distance are less effected by vaporization and dispersion of small droplets and therefore should give better agreement with atomization theory. Profiles of characteristic drop diameters were also obtained by making at least five line-of-sight measurements across the spray at several horizontal positions above and below the center line of the spray
Acceleration wave breakup of liquid jets with airstreams
Characteristic mean drop diameters were determined for downstream and upstream injection into nonswirling and swirling airflows. The effects of the aerodynamic and liquid surface forces on the mean drop size were obtained with a scanning radiometer. Water jet breakup was studied primarily in the acceleration wave regime with values of WeRe 10 to the 6th power and the following empirical expression was obtained: D(o)/D(m) =C (WeRe) to the 0.4, power where D(o) and D(m) are the orifice and mean drop diameters, respectively. We and Re are the Weber and Reynolds numbers defined as repectively, We = rho(a)D(o)V(r)/sigma and Re = D(o)V(r)/nu, where V(r) and rho(a) are airstream relative velocity and density, respectively, and sigma and nu are surface tension and kinematic viscosity of the liquid, respectively. The proportionally constant C was evaluated as follows: for downstream injection, C = 0.023 with nonswirling airflow, and C = 0.027 with swirling airflow. For upstream injection, the empirical expression D(o)/D(m) = 0.0045 (WeRe) to the 0.5 power was obtained with nonswirling airflow. Experimental conditions included a water flow rate of 68 liter per hour and an airflow rate per unit area range of 4.6 to 25.2 gm/sq cm sec at 293 K and atmospheric pressure
Characterization of simulated small-droplet fuel sprays
A two-fluid pneumatic atomizer operating at relatively high liquid and gas pressures produced water sprays that simulated small-droplet clouds of liquid fuel for use in studying vaporization and fuel-air mixing effects on combustor performance and emissions. To characterize the sprays, a scattered-light scanning instrument was developed and measurements of volume median or volume mean diameter, D sub V.5, were correlated with D sub O, W sub w, and W sub n, i.e., orifice diameter, water, and nitrogen gas flow rates, respectively, to give the general expression: D sub v.5 approx. (D sub o sup 0.2) (W sub w sup m) (W sub n sup n), which yields D sub v.5 = 45 (D sub o sup 0.2) (W sub w sup 0.2) (W sub w sup - 1.2). Values of D sub o, W sub w, and W sub n are in centimeters and grams/second, respectively. Farther downstream at an axial distance of 6.7 cm, exponent m increased from 0.2 to 0.4 and exponent n decreased from -1.2 to -1.0 and at a distance of 25 cm downstream of the atomizer, n decreased to -0.8. The increase in exponent m and decrease in exponent n was attributed to a loss of very small droplets from the spray due primarily to vaporization and diffusion effects on clouds of small droplets traveling a distance of 25 cm
Atomizing characteristics of swirl can combustor modules with swirl blast fuel injectors
Cold flow atomization tests of several different designs of swirl can combustor modules were conducted in a 7.6 cm diameter duct at airflow rates (per unit area) of 7.3 to 25.7 g/sq cm sec and water flow rates of 6.3 to 18.9 g/sec. The effect of air and water flow rates on the mean drop size of water sprays produced with the swirl blast fuel injectors were determined. Also, from these data it was possible to determine the effect of design modifications on the atomizing performance of various fuel injector and air swirler configurations. The trend in atomizing performance, as based on the mean drop size, was then compared with the trends in the production of nitrogen oxides obtained in combustion studues with the same swirl can combustors. It was found that the fuel injector design that gave the best combustor performance in terms of a low NOx emission index also gave the best atomizing performance as characterized by a spray of relatively small mean drop diameter. It was also demonstrated that at constant inlet air stream momentum the nitrogen oxides emission index was found to vary inversely with the square of the mean drop diameter of the spray produced by the different swirl blast fuel injectors. Test conditions were inlet air static pressures of 100,000 to 200,000 N/sq m at an inlet air temperature of 293 K
Atomization of water jets and sheets in axial and swirling airflows
Axial and swirling airflows were used to break up water jets and sheets into sprays of droplets to determine the overall effects of orifice diameter, weight flow of air, and the use of an air swirler on fineness of atomization as characterized by mean drop size. A scanning radiometer was used to determine the mean drop diameter of each spray. Swirling airflows were produced with an axial combustor, 70 deg blake angle, air swirling. Water jets were injected axially upstream, axially downstream and cross stream into the airflow. In addition, pressure atomizing fuel nozzles which produced a sheet and ligament type of breakup were investigated. Increasing the weight flow rate of air or the use of an air swirling markedly reduced the spray mean drop size
Air-atomizing splash-cone fuel nozzle reduces pollutant emissions from turbojet engines
Advantages of fuel nozzle over conventional pressure-atomizing fuel nozzles: simplicity of construction, ability to distribute fuel-air mixture uniformly across full height of combustor without using auxiliary air supply, reliability when using contaminated fuels, and durability of nozzle at high operating temperatures
Optical characterization of clouds of fine liquid-nitrogen particles
Characteristic drop size, D sub 32, of clouds of fine liquid nitrogen particles was measured with a scattered light scanning instrument developed at NASA-Lewis. Calibration of the instrument was accomplished with suspensions of monosized polystyrene spheres and the scattered light scanner was then used to investigate the mechanism of liquid nitrogen jet disintegration in high velocity gas flow. The Sauter mean diameter, D sub 32, was found to vary inversely with nitrogen gas mass-flux raised to the 1.33 power. Values of D sub 32 varied from 5 to 25 microns and the mass-flux exponent 1.33 agrees well with theory for liquid jet breakup in high velocity gas flow. Loss of fine particles due to the high vaporization rate of liquid nitrogen was avoided by sampling the spray 1.3 cm downstream of the nozzle orifice. The presence of high velocity and thermal gradients in the gas phase also made sampling of the particles quite difficult. As a result, it was necessary to correct the measurements for background noise produced by both highly turbulent gas flow and thermally induced density gradients in the gas phase
Cryogenic liquid-jet breakup in two-fluid atomizers
A two-fluid atomizer was used to study the breakup of liquid-nitrogen jets in nitrogen, argon, and helium atomizing gas flows. A scattered-light scanner particle sizing instrument previously developed at NASA Lewis Research Center was further developed and used to determine characteristic drop diameters for the cryogenic sprays. In the breakup regime of aerodynamic-stripping, i.e., sonic-velocity conditions, the following correlation of the reciprocal Sauter mean diameter, D(sub 32)exp -1, with the atomizing-gas flowrate, W(g), was obtained: D(sub 32)exp -1 = k(sub c)(W(g)exp 1.33), where k(sub c) is a proportionality constant evaluated for each atomizing gas. Values of k(sub c) = 120, 220, and 1100 were obtained for argon, nitrogen, and helium gasflows, respectively. The reciprocal Sauter mean diameter and gas flowrate have the units of 1/cm and g/sec, respectively. In the regime of capillary-wave breakup, or subsonic conditions, it was found that D(sub 32)exp -1 = k(g)(W(g)exp 0.75), where k = 270, 390, and 880 for argon, nitrogen, and helium gasflows, respectively
Fluid spray simulation with two-fluid nozzles
Two-phase interacting flow inside a two-fluid fuel atomizer was investigated and a correction of aerodynamic and liquid-surface forces with characteristic drop diameter was obtained for liquid-jet breakup in Mach 1 gas flow. Nitrogen gas mass-flux was varied from 6 to 50 g/sq cm sec by using four differently sized two-fluid atomizers with nozzle diameters varyig from 0.32 to 0.56 cm. The correlation was derived by using the acoustic gas velocity, V sub c, as a basic parameter in defining and evaluating the dimensionless product of the Weber (We) and Reynolds (Re) numbers. By using the definition of WeRe, it was found that the ratio of orifice diameter to Sauter mean drop diameter could be correlated with the dimensionless ratio WeRe and the gas to liquid density ratio
- …