1 research outputs found

    Innovative Metallic Microfluidic Device for Intensified Biodiesel Production

    Get PDF
    We present a strategy for intensified biodiesel production in a novel metallic microdevice. Additive manufacturing using Selective Laser Melting (SLM) was employed to build the metallic device consisting of multiple micro reactors monolithically integrated with multiple micro heat exchangers. This device allows high conversion rate of biodiesel production with concomitant use of the rejected heat from external source to enhance the reaction temperature and, thereby, its output. The biodiesel production was carried out using soybean oil, ethanol and NaOH as the catalyst. The influences of the reaction temperature and the residence time in the biodiesel production was examined. Biodiesel yield increased with the reaction temperature and a rate of conversion of 99.6% was achieved with a reactor residence time of less than 35 seconds. The work opens up a pathway to exploit waste heat to intensify biodiesel production and contribute significantly to global sustainability
    corecore