54 research outputs found

    Impact of exercise-nutritional state interactions in patients with type 2 diabetes

    No full text
    Introduction This study examines the role of nutritional status during exercise training in patients with type 2 diabetes mellitus by investigating the effect of endurance-type exercise training in the fasted versus the fed state on clinical outcome measures, glycemic control, and skeletal muscle characteristics in male type 2 diabetes patients. Methods Twenty-five male patients (glycated hemoglobin (HbA1c), 57 ± 3 mmol·mol−1 (7.4% ± 0.3%)) participated in a randomized 12-wk supervised endurance-type exercise intervention, with exercise being performed in an overnight-fasted state (n = 13) or after consuming breakfast (n = 12). Patients were evaluated for glycemic control, blood lipid profiles, body composition and physical fitness, and skeletal muscle gene expression. Results Exercise training was well tolerated without any incident of hypoglycemia. Exercise training significantly decreased whole-body fat mass (−1.6 kg) and increased high-density lipoprotein concentrations (+2 mg·dL−1), physical fitness (+1.7 mL·min−1·kg−1), and fat oxidation during exercise in both groups (PTIME 0.05). HbA1c concentrations significantly decreased after exercise training (PTIME < 0.001), with a significant greater reduction after consuming breakfast (−0.30% ± 0.06%) compared with fasted state (−0.08% ± 0.06%; mean difference, 0.21%; PTIME × GROUP = 0.016). No interaction effects were observed for skeletal muscle genes related to lipid metabolism or oxidative capacity. Conclusions Endurance-type exercise training in the fasted or fed state do not differ in their efficacy to reduce fat mass, increase fat oxidation capacity, and increase cardiorespiratory fitness and high-density lipoprotein concentrations or their risk of hypoglycemia in male patients with type 2 diabetes. HbA1c seems to be improved more with exercise performed in the postprandial compared with the postabsorptive state

    Muscle carnosine in experimental autoimmune encephalomyelitis and multiple sclerosis

    Get PDF
    BACKGROUND: Muscle carnosine is related to contractile function (Ca++ handling) and buffering of exercise-induced acidosis. As these muscular functions are altered in Multiple Sclerosis (MS) it is relevant to understand muscle carnosine levels in MS. METHODS: Tibialis anterior muscle carnosine was measured in an animal MS model (EAE, experimental autoimmune encephalomyelitis, n = 40) and controls (CON, n = 40) before and after exercise training (EAEEX, CONEX, 10d, 1 h/d, 24 m/min treadmill running) or sedentary conditions (EAESED, CONSED). Human m. vastus lateralis carnosine of healthy controls (HC, n = 22) and MS patients (n = 24) was measured. RESULTS: EAE muscle carnosine levels were decreased (p < .0001) by ~ 40% to ~ 64% at 10d and 17d following EAE induction (respectively) regardless of exercise (p = .823). Similarly, human MS muscle carnosine levels were decreased (- 25%, p = .03). CONCLUSION: Muscle carnosine concentrations in an animal MS model and MS patients are substantially reduced. In EAE exercise therapy does not restore this

    Is Walking Capacity in Subjects with Multiple Sclerosis Primarily Related to Muscle Oxidative Capacity or Maximal Muscle Strength? A Pilot Study

    Get PDF
    Background and Purpose. Walking capacity is reduced in subjects with multiple sclerosis (MS). To develop effective exercise interventions to enhance walking capacity, it is important to determine the impact of factors, modifiable by exercise intervention (maximal muscle strength versus muscle oxidative capacity), on walking capacity. The purpose of this pilot study is to discriminate between the impact of maximal muscle strength versus muscle oxidative capacity on walking capacity in subjects with MS. Methods. From 24 patients with MS, muscle oxidative capacity was determined by calculation of exercise-onset oxygen uptake kinetics (mean response time) during submaximal exercise bouts. Maximal muscle strength (isometric knee extension and flexion peak torque) was assessed on dynamometer. All subjects completed a 6-minute walking test. Relationships between walking capacity (as a percentage of normal value) and muscle strength (of knee flexors and extensors) versus muscle oxidative capacity were assessed in multivariate regression analyses. Results. The expanded disability status score (EDSS) showed a significant univariate correlation (r=-0.70, P<0.004) with walking capacity. In multivariate regression analyses, EDSS and mean response time, but not muscle strength, were independently related to walking capacity (P<0.05). Conclusions. Walking distance is, next to disability level and not taking neurologic symptoms/deficits into account, primarily related to muscle oxidative capacity in subjects with MS. Additional study is needed to further examine/verify these findings

    Cells to the rescue : emerging cell-based treatment approaches for NMOSD and MOGAD

    No full text
    Cell-based therapies are gaining momentum as promising treatments for rare neurological autoimmune diseases, including neuromyelitis optica spectrum disorders and myelin oligodendrocyte glycoprotein antibody-associated disease. The development of targeted cell therapies is hampered by the lack of adequate animal models that mirror the human disease. Most cell-based treatments, including HSCT, CAR-T cell, tolerogenic dendritic cell and mesenchymal stem cell treatment have entered early stage clinical trials or have been used as rescue treatment in treatment-refractory cases. The development of antigen-specific cell-based immunotherapies for autoimmune diseases is slowed down by the rarity of the diseases, the lack of surrogate outcomes and biomarkers that are able to predict long-term outcomes and/or therapy effectiveness as well as challenges in the manufacturing of cellular products. These challenges are likely to be overcome by future research

    Made to measure : patient-tailored treatment of multiple sclerosis using cell-based therapies

    No full text
    Currently, there is still no cure for multiple sclerosis (MS), which is an autoimmune and neurodegenerative disease of the central nervous system. Treatment options predominantly consist of drugs that affect adaptive immunity and lead to a reduction of the inflammatory disease activity. A broad range of possible cell-based therapeutic options are being explored in the treatment of autoimmune diseases, including MS. This review aims to provide an overview of recent and future advances in the development of cell-based treatment options for the induction of tolerance in MS. Here, we will focus on haematopoietic stem cells, mesenchymal stromal cells, regulatory T cells and dendritic cells. We will also focus on less familiar cell types that are used in cell therapy, including B cells, natural killer cells and peripheral blood mononuclear cells. We will address key issues regarding the depicted therapies and highlight the major challenges that lie ahead to successfully reverse autoimmune diseases, such as MS, while minimising the side effects. Although cell-based therapies are well known and used in the treatment of several cancers, cell-based treatment options hold promise for the future treatment of autoimmune diseases in general, and MS in particular
    • …
    corecore