2 research outputs found

    Oxide Nanostructures: Characterizations And Optical Bandgap Evaluations Of Cobalt-Manganese And Nickel-Manganese At Different Temperatures

    Get PDF
    Cobalt-Manganese and Nickel-Manganese oxide (CoMnO and NiMnO) nanoparticles were prepared by chemical co-precipitation method by decomposition of their respective metal sulfides and sodium carbonate using ethylene diamene tetra acetic acid as the capping agent. The samples were heated at 400, 600 and 800 Β°C. The average particle sizes were determined from the X-ray line broadening. The diffractograms were compared with JCPDS data to identify the crystallographic phase and cubic structure of the particles. The samples were characterized by XRD, FTIR and UV analyses. The internal elastic micro strains were calculated and it was seen that as the particle size increases strain decreases. The FTIR studies have been used to confirm the metal oxide formation. The chemical compositions of the samples were verified using EDX spectra. The surface morphologies of the samples were studied from the SEM images. The absorption spectra of the materials in the UV-Vis-NIR range were recorded. From the analysis of the absorption spectra, the direct band gaps of the materials were calculated. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/965

    Polypyrrole-based copper oxide-nickel oxide nanocomposites in wastewater treatment, bacterial control and agricultural usage

    No full text
    abstract: Polymer matrix nanocomposites are in high demand and have attracted great interest in the expansion of new functional materials owing to their potential in environmental remediation applications. In this context, Polypyrrole-Based Copper oxide-Nickel oxide Nanocomposite (PPCN) was successfully fabricated by combining chemical co-precipitation and in-situ polymerization methods. The chemical co-precipitation technique was used to synthesize Copper oxide-Nickel oxide Nanocomposite using citric acid as a capping agent and in-situ polymerization method was applied to produce Polypyrrole (PPY). The photocatalytic process is a green technology that is developing as a viable option, for removing a variety of toxic pollutants, and antibacterial activity in surface water irrigation is beneficial for the protection of the edible crops from the microbial and dye pollutants in wastewater. The synthesized PPCN is investigated for its photocatalytic properties and for antibacterial activities and is safe for the environment making them a promising material for wide-ranging applications including wastewater treatment, bacterial control, and agricultural purposes. The photocatalytic behavior of the PPCN was studied for the removal of dyes under UV irradiation and showed that these polymer-based nanocomposites could remove and destroy the dye contaminants in high worth. Moreover, the PPCN acts as an excellent catalyst and observed a remarkable dye degradation efficiency of 86% in Alizarin Red (AR) and 80% in Toluidine Blue (TB) dyes within 5hrs. The results show that the PPCN could be used as a well-performing catalyst for water contamination removal. In addition, the antibacterial results indicate that the maximum antibacterial action is against Staphylococcus aureus (S. aureus), Bacillus cereus (B. cereus), and Escherichia coli (E. coli)
    corecore