274 research outputs found
A Method for Reducing the Severity of Epidemics by Allocating Vaccines According to Centrality
One long-standing question in epidemiological research is how best to
allocate limited amounts of vaccine or similar preventative measures in order
to minimize the severity of an epidemic. Much of the literature on the problem
of vaccine allocation has focused on influenza epidemics and used mathematical
models of epidemic spread to determine the effectiveness of proposed methods.
Our work applies computational models of epidemics to the problem of
geographically allocating a limited number of vaccines within several Texas
counties. We developed a graph-based, stochastic model for epidemics that is
based on the SEIR model, and tested vaccine allocation methods based on
multiple centrality measures. This approach provides an alternative method for
addressing the vaccine allocation problem, which can be combined with more
conventional approaches to yield more effective epidemic suppression
strategies. We found that allocation methods based on in-degree and inverse
betweenness centralities tended to be the most effective at containing
epidemics.Comment: 10 pages, accepted to ACM BCB 201
Recommended from our members
A Global Stochastic Modeling Framework to Simulate and Visualize Epidemics
Epidemics have caused major human and monetary losses through the course of human civilization. It is very important that epidemiologists and public health personnel are prepared to handle an impending infectious disease outbreak. the ever-changing demographics, evolving infrastructural resources of geographic regions, emerging and re-emerging diseases, compel the use of simulation to predict disease dynamics. By the means of simulation, public health personnel and epidemiologists can predict the disease dynamics, population groups at risk and their geographic locations beforehand, so that they are prepared to respond in case of an epidemic outbreak. As a consequence of the large numbers of individuals and inter-personal interactions involved in simulating infectious disease spread in a region such as a county, sizeable amounts of data may be produced that have to be analyzed. Methods to visualize this data would be effective in facilitating people from diverse disciplines understand and analyze the simulation. This thesis proposes a framework to simulate and visualize the spread of an infectious disease in a population of a region such as a county. As real-world populations have a non-homogeneous demographic and spatial distribution, this framework models the spread of an infectious disease based on population of and geographic distance between census blocks; social behavioral parameters for demographic groups. the population is stratified into demographic groups in individual census blocks using census data. Infection spread is modeled by means of local and global contacts generated between groups of population in census blocks. the strength and likelihood of the contacts are based on population, geographic distance and social behavioral parameters of the groups involved. the disease dynamics are represented on a geographic map of the region using a heat map representation, where the intensity of infection is mapped to a color scale. This framework provides a tool for public health personnel and epidemiologists to run what-if analyses on disease spread in specific populations and plan for epidemic response. By the means of demographic stratification of population and incorporation of geographic distance and social behavioral parameters into the modeling of the outbreak, this framework takes into account non-homogeneity in demographic mix and spatial distribution of the population. Generation of contacts per population group instead of individuals contributes to lowering computational overhead. Heat map representation of the intensity of infection provides an intuitive way to visualize the disease dynamics
The degradation of MgB2 under ambient environment
The superconductivities of samples prepared by several procedures were found
to degrade under ambient environment. The degradation mechanism was studied by
measuring the change of surface chemical composition of dense MgB2 pellets
(prepared by hot isostatic pressure, HIPed) under atmospheric exposure using
X-ray Photoelectron Spectroscopy (XPS). Results showed that samples with poor
connectivity between grains and with smaller grain sizes degrade with time when
exposed to ambient conditions. In these samples, the Tc did not change with
time, but the superconducting transition became broader and the Meissner
fraction decreased. In contrast, our well-sintered and the HIPed samples
remained stable for several months under ambient condition. The degradation was
found to be related to surface decomposition as observed by XPS. We observed
the formation of oxidized Mg, primarily in the form of a Mg hydroxide, the
increase of C and O contents, and the reduction of B concentration in the
surface layer of MgB2 samples.Comment: 15 pages, 3 figure
Improved superconducting properties of MgB2
We present electrical transport, magnetization, and specific heat
measurements on bulk MgB2 samples (T_{c} = 38.5 K) synthesized under 200 MPa
pressure using a process based on hot isostatic pressing with cooling under
pressure. The samples are fully dense and display excellent superconducting
properties, including a narrow superconducting transition width (\Delta T_{c} =
0.75 K), a high upper critical field H_{c2} (H_{c2}(0) ~ 155 kOe), and a
critical current density J_{c} that is the largest yet measured for bulk
samples of MgB2 (J_{c}(0) ~ 1.4 MA/cm^{2}). Specific heat measurements yielded
a jump \Delta C at T_{c} of 92 mJ/mol K. These superconducting properties are
comparable to those obtained with techniques that are not so well suited to
industrial scale fabrication.Comment: 7 text pages, 5 figures, submitted to Physica
Microstructure and superconducting properties of hot isostatically pressed MgB2
Bulk samples of MgB2 have been formed by hot isostatic pressing (HIPping) of
commercial powder at 100MPa and 950=B0C. The resulting material is 100% dense
with a sharp superconducting transition at 37.5K. Microstructural studies have
indicated the presence of small amounts of second phases within the material,
namely MgO and B rich compositions, probably MgB4. Magnetisation measurements
performed at 20K have revealed values of Jc=1.3 x 106A/cm2 at zero field, and
9.3 x 105A/cm2 at 1T. Magneto optical (MO) studies have shown direct evidence
for the superconducting homogeneity and strong intergranular current flow in
the material.Comment: 3 pages, 6 figures, text updated, new references included and
discussed. Submitted to Superconductor Science and Technolog
tRNA epitranscriptomics and biased codon are linked to proteome expression in
Among components of the translational machinery, ribonucleoside modifications on tRNAs are emerging as critical regulators of cell physiology and stress response. Here, we demonstrate highly coordinated behavior of the repertoire of tRNA modifications of Plasmodium falciparum throughout the intra-erythrocytic developmental cycle (IDC). We observed both a synchronized increase in 22 of 28 modifications from ring to trophozoite stage, consistent with tRNA maturation during translational up-regulation, and asynchronous changes in six modifications. Quantitative analysis of ~2,100 proteins across the IDC revealed that up- and down-regulated proteins in late but not early stages have a marked codon bias that directly correlates with parallel changes in tRNA modifications and enhanced translational efficiency. We thus propose a model in which tRNA modifications modulate the abundance of stage-specific proteins by enhancing translation efficiency of codon-biased transcripts for critical genes. These findings reveal novel epitranscriptomic and translational control mechanisms in the development and pathogenesis of Plasmodium parasites.Singapore. National Research FoundationSingapore-MIT Alliance (Graduate Fellowship
Recommended from our members
Global Stochastic Field Simulator
This poster was featured at the 2013 Perot Museum of Nature and Science's 'Social Science' exhibit. It discusses the Global Stochastic Field Simulator, conceived in the summer of 2011
Recommended from our members
A Framework to Simulate and Visualize Epidemics
This poster was featured at the 2013 Perot Museum of Nature and Science's 'Social Science' exhibit. The poster discusses a framework to simulate and visualize epidemics
- …