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This thesis proposes a framework to simulate and visualize the spread of an infectious 

disease in a population of a region such as a county. As real-world populations have a non-

homogeneous demographic and spatial distribution, this framework models the spread of an 

infectious disease based on population of and geographic distance between census blocks; 

social behavioral parameters for demographic groups. The population is stratified into 

demographic groups in individual census blocks using census data. Infection spread is 

modeled by means of local and global contacts generated between groups of population in 

census blocks. The strength and likelihood of the contacts are based on population, 

geographic distance and social behavioral parameters of the groups involved. The disease 

dynamics are represented on a geographic map of the region using a heat map 

representation, where the intensity of infection is mapped to a color scale. 

This framework provides a tool for public health personnel and epidemiologists to run 

what-if analyses on disease spread in specific populations and plan for epidemic response. By 

the means of demographic stratification of population and incorporation of geographic 

distance and social behavioral parameters into the modeling of the outbreak, this framework 

takes into account non-homogeneity in demographic mix and spatial distribution of the 

population. Generation of contacts per population group instead of individuals contributes to 

lowering computational overhead. Heat map representation of the intensity of infection 

provides an intuitive way to visualize the disease dynamics. 
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CHAPTER 1

INTRODUCTION

An epidemic is the occurrence in a community or region of cases of an illness, specific

health-related behavior, or health-related events clearly in excess of normal expectancy as

defined by Merrill and Timmreck [21]. Though it is not a requirement for an epidemic to be

contagious, most epidemics that are caused by infectious agents are. Propagated epidemics

arise from the disease being transmitted from an infected individual to a non-infected one.

Disease transmission can occur either by direct or indirect modes of transmission. Direct

transmission is the direct transfer of the disease-causing agent through direct physical contact

or direct person-to-person contact. Indirect transmission occurs when disease-causing agents

are carried by some intermediate entities such as droplets or dust particles in case of airborne

diseases, drinking water or water-bodies in case of waterborne diseases, or fomites such as

utensils, clothing or shared items in case of vehicle-borne diseases [21]. In the context of a

localized area, epidemics occur when the rate of transmission of the infection is exponential,

resulting in a significant raise in the number of infected people in the area.

History is strewn with epidemics of varying scales, ranging from local outbreaks to

pandemics that spread to various continents, causing significant human and monetary losses.

The Black Death caused by Bubonic plague during 1338 1351, that spread over Europe and

Asia with an estimated death toll of 100 million [17] and the 1918 flu pandemic that took

an estimated 75 million lives worldwide [25] are some of the most devastating pandemics in

recorded human history. The 2009 flu pandemic that took a toll of about 14,286 worldwide

during 2009-2010 [4] is a reminder of the threat posed by epidemics in the modern world, and

the importance of planning and prevention of disease spread in the context of globalization

and international travel [12] [15].

Merrill and Timmreck [21] defined epidemiology as the study of the distribution and

determinants of health-related states or events in human population and the application of this

study to prevention and control of health problems. Epidemiologists study the occurrence,
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frequency and pattern of diseases in specific populations, identifying individuals and popula-

tions at risk of contracting a disease, among others. Epidemiologists work with public-health

professionals towards developing public-health policy and response plans that contribute to

preventing and controlling disease spread. What-if analyses on epidemic outbreaks aid the

processes of planning the response for an impending epidemic outbreak and decision making

in the case of an epidemic.

The ever-changing demographics of communities and transportation options influence

the pattern and rate of disease spread in a given population. The characteristics of disease

spread vary not only for different geographic regions but also for the same region with changing

times due to variation including changes in demographics and advancements in transportation

infrastructure among others. An Influenza epidemic in a region today would evolve rather

differently from one in the same region a century ago owing to a varied population distribution,

improved awareness and altered interpersonal interaction patterns. With the prevalence of

emerging and re-emerging diseases that have differing infection characteristics, developing

epidemic response and public-health policies based on historic information is not reliable

[24] [14]. Additionally, historic data on epidemics often suffers from under-reporting and

inaccuracies due to insufficient training and infrastructural issues. The lack of accurate data

on the basis of which decisions and plans can be made, calls for infection spread models and

simulations that predict the pattern, frequency of the spread of a disease.

Various disease spread models have been developed to study epidemic outbreaks in

a population [24] [22] [23]. Mathematical models based on compartmental models of epi-

demics help to predict infection spread in homogenous populations by means of stochastic or

deterministic equations. In order to model the spread of infectious diseases in a population,

it is important to consider the non-homogeneity and spatial distribution of the population of

a region; identify risk groups for the disease among the various demographics and the social

behavior of the participating demographic groups [24]. Models based on the cellular automata

paradigm make an effort towards capturing the spatial distribution of a disease [23]. More

complex computational models like agent based models recognize the non-homogeneity in
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the population [22].

By the means of simulation, the dynamics of an epidemic in the desired population can

be studied, while taking into account the characteristics and features of the geographic region

and its population. As the disease spread is influenced by a variety of real life constraints and

involves a large number of stake holders, simulating it can be complex. This necessitates the

use of computational tools and methodologies to perform simulations. As a consequence of

the large numbers of individuals and inter-personal interactions involved, the simulation may

generate sizeable amounts of data that have to be analyzed. Methods to visualize the data

greatly facilitate the process of studying and analyzing the simulation [22] [14]. An intuitive

way to depict the progression of an epidemic in a geographic region is to represent it on

a geographic map. With the assistance of color codes to denote intensity of infection in a

sub-region, the spatial and temporal dynamics of disease spread in a region can be effectively

studied.

1.1. Overview of Thesis

As part of this thesis, a framework to simulate an epidemic in the population of a

region and visualize the disease dynamics has been developed. Census data provided by the

US Census Bureau is used to capture the spatial distribution of population in the region. The

population is classified into demographic groups on the basis of disease-specific risk groups,

such as age or gender. Disease spread is simulated by the means of contacts between sub-

populations. The contact model is based on a global stochastic field simulation paradigm

where stochastic infectious contacts are generated between sub-populations of different cen-

sus blocks on the basis of population and geographic distance between census blocks [24].

The simulation is depicted on a geographic map of the region to provide visualization of the

disease dynamics in order to aid the analysis of the epidemic. A heat map representation with

a color scheme that maps a color to the intensity of infection at any time step in a census

block is used for the visualization.

The focus of this thesis is on the modeling of propagated epidemics. Epidemics

resulting from infectious diseases that spread through transmission of the pathogen from
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one person to another by the means of interactions, either physical or via a medium are

modeled and analyzed. The SEIR compartmental model of epidemiology is used to classify

the population into compartments based on infection state and formulate rules for disease

transmission.

Disease spread is simulated by generating local and global infectious contacts between

sub-populations in individual census blocks. Infectious contacts are generated randomly be-

tween the infected populations of every demographic group in a census block and susceptible

populations of the region. Demographic groups to be contacted while making infectious con-

tacts and their locations are selected randomly with the help of social behavioral constraints

of participating groups, population and distance between census blocks they are located in.

Disease dynamics are depicted using a heat map representation. At the end of every

time step of the simulation, intensity of infection in each census block is shown on the regions

geographic map using a color scheme. Geometry of the region as provided by the census data

is used to generate its geographic map. Methods from the GeoTools code library [5] are used

to render the map and depict the color scheme of the heat map representation.

The simulator has been built using an object oriented methodology and written in

Java. The census data is retrieved from Postgres databases using PostgreSQL queries. Java

Database Connectivity (JDBC) technology is used for database connectivity from the Java

classes. Methods from GeoTools [5], a Java based open source code library are used for the

visualization of disease dynamics.

1.2. Contribution

The epidemic outbreak simulator developed as part of this thesis, provides a modeling

tool for public health professionals and epidemiologists to study and interpret disease dynam-

ics for a propagated epidemic in a region. By the means of what-if analyses on disease spread

in a population, public health personnel can fine-tune public health policies and plan response

in case of an outbreak. The simulator helps predict disease spread patterns, estimate epi-

demic characteristics, and study impact of the epidemic on sub-regions and sub-groups of

populations. The incorporation of spatial distribution of population and social behavior of
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demographic groups into the model enables more realistic modeling of the epidemic. Heat-

map representation of the disease spread and intensity of infection on a geographic map of

the region provides an intuitive method to analyze the large amount of data produced by the

simulation. In summary, this thesis aims at providing a stochastic method to simulate an

epidemic in a region taking into account the non-homogeneity and spatial distribution of its

population, and an intuitive way to visualize and analyze the disease dynamics.
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CHAPTER 2

BACKGROUND

2.1. Epidemic Theory

An epidemic is defined as an unusually high occurrence of a disease or illness in a

population or area [3]. The term outbreak, which is often used synonymously with epidemic,

refers to an epidemic confined to a localized area. An ongoing, usual, or constant presence

of a disease in a community or among a group of people is referred to as an endemic, while a

pandemic is an epidemic affecting or attacking the population of an extensive region, country

or continent [3] [21].

The contemporary usage of the term epidemic is made to describe a relative excess

of diseases under a wide variety of conditions. These include both communicable infectious

diseases like influenza or cholera and non-communicable diseases such as breast cancer, or

physical conditions such as obesity [18]. Infectious-disease epidemics can be classified into

common-source epidemics and propagated epidemics based on how they spread. Common

source epidemics arise from a specific source such as contaminated food, while propagated

epidemics, such as tuberculosis or influenza arise from infection transmitted from one person

to another. A mixed epidemic occurs when inter-personal contacts among hosts of common-

source epidemics leads to a propagated epidemic [21] [18].

Epidemiology is the study of the distribution and determinants of health-related states

or events in human populations and the application of this study to the prevention and control

of health problems. The history of epidemiology dates back to Hippocrates, when he made

observations regarding occurrence of diseases. Daniel Bernoullis mathematical model to

evaluate effectiveness of techniques of variolation against smallpox, William Farrs fitting of

quarterly smallpox data to a normal curve were some of the early applications of mathematics

in epidemiology [19]. John Snows investigation of the 1854 London cholera outbreak is

considered one of the most important contributions to the field of epidemiology [21] [19].

Various infectious disease spread models using different approaches and modeling paradigms
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have been developed since.

Disease-causing agents and hosts are important elements of epidemics caused by com-

municable diseases. Agents, such as bacteria or viruses are the cause of the disease, while

hosts such as humans are the organisms that harbor the disease. Infectious-disease epidemics

are associated with timelines which govern the temporal nature of an epidemic. The time

period between a hosts exposure to a disease causing agent and the host becoming infec-

tious, i.e. transmitting the infection is called the latent period or the period of latency. The

duration for which an infected host can transmit the disease-causing agent to a susceptible

host is referred to as the infectious period. The disease-causing pathogen is associated with

a value of infectivity, which refers to the ability of a pathogen to establish an infection in a

host population.

2.2. Disease Compartments

At any time during the course of an epidemic, there are people who are at different

levels of exposure to the disease. While some of them are yet to contract the disease, some

of them may be infectious, actively transmitting the infection, while others are recovered

and attain immunity to the disease. The host population is classified into different groups or

compartments with respect to the state of infection they are in and the nature of the disease

involved.

One of the conventional models of epidemiology is the SIR model where the population

is classified into susceptible, infectious and recovered compartments. Individuals who are at

risk of contracting the infection are placed in the susceptible compartment. Individuals who

contracted the infection and actively transmit it are classified as infectious, while individuals

who either recovered and gained immunity or succumb to the disease are placed in the

recovered (or removed) compartment. These compartments are modified depending on the

disease being studied. For diseases like influenza, where there is a period of latency involved,

an additional latent (or exposed) compartment is used. In the case of certain diseases such as

common cold, against which the hosts do not gain immunity, the host population is classified

into either susceptible or infectious [11] [7].
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2.3. Epidemic Modeling

Various attempts have been made at modeling epidemics through the years. These

range from mathematical models that use simple deterministic equations to agent-based com-

putational models that make use of heavy computational resources. Some of the significant

and relevant epidemic-modeling approaches are reviewed below:

2.3.1. Mathematical Models

Mathematical models have been used in modeling epidemics since the early 20th cen-

tury. Many of them are based on time-dependent differential equation systems. Deterministic

equations were used to model transition of hosts between disease compartments in the initial

models. Later on, binomial distributions and other probabilistic aspects were made use of

to represent disease spread bringing a stochastic dimension to epidemic modeling [7]. Math-

ematical models can be classified into deterministic and stochastic models, based on the

inclusion of probabilistic functions into the model.

2.3.1.1. Deterministic Models. Deterministic models use differential equations, which

govern the movements of population between disease compartments, to model the spread of

an epidemic. The classic SIR model, which is based on the Kermack-McKendrick threshold

theorem [10], assumes population equilibrium and ignores changes to population due to mi-

gration, births or deaths owing to the comparatively shorter duration of the epidemic. The

following differential equations govern the population dynamics of the model:

dS

d t
= −βIS

d I

d t
= βIS − υI

dR

d t
= υI

dS

d t
+

d I

d t
+

dR

d t
= 0

(1)

Where S(t), I(t), R(t) represent susceptible, infectious and recovered (or removed)

compartments respectively at time t, β is the infection rate and υ is the rate of recovery.
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Variations of this model include the SEIR model where latent period of the disease

is considered and the SIRS model where the recovered hosts can contract infection again,

among others. These models assume a homogeneous population mix, and do not consider

the spatial distribution of the population [24].

2.3.1.2. Stochastic Models. Factors such as the environment or demographics contribute

to the inherent variability that exists in the system for which the disease spread is being

modeled [9]. In the last few decades, the need to incorporate stochasticity into epidemic

models to represent variability in the system has been well recognized [20]. A stochastic model

is expressed as a stochastic process with a collection of random variables. The solution of a

stochastic model is a probability distribution for each of the random variables [9]. Stochastic

models were discussed in literature in the early 20th century, alongside deterministic ones.

Early stochastic models were based on discrete-time systems and chain binomial models.

The Reed-Frost model [8] is one of the well-known chain binomial models. The number

of susceptible individuals in the population at the end of a time interval is represented as a

binomial distribution in the Reed-Frost model. During the time interval (t, t+1), It infectives

infect St susceptibles, where each susceptible individual infects an infective individual with a

probability p. Given St and It , the number of susceptibles at time t + 1, St+1 is binomially

distributed with index St and mean St(1− p)It .

There have been various attempts at producing variations of the continuous time

stochastic SIR model, by adding stochastic terms to the deterministic SIR model, such as:

(2)
dE{I(t + dt)}

d t
=

(
αE[S(t)]

n
− γ

)
E[I(t)] +

a

n
cov{S(t), I(t)}

where,

(3) cov{S(t), I(t)} = E [(S(t)− E[S(t)]) (I(t)− E[I(t)])]

It can be seen that in a deterministic case, the expected values E[S(t)] and E[I(t)]

are equal to S(t) and I(t) respectively and the effect of covariance term is nullified. However,

9



when stochasticity is incorporated into the model and the variables are based on probability

distributions, the covariance term comes into play, affecting the final outcome.

Though in many systems deterministic solution turns out to be a good approximation

to the stochastic mean in case of modeling an outbreak in a large population, it is widely

accepted that fluctuations due to stochasticity do not always average out, thus leaving an

effect on the final outcome [20]. By introducing probability metrics, stochastic models make

an attempt towards a closer real life modeling of epidemics [7].

2.3.2. Computational Models

Epidemiological studies often involve large populations and make use of large datasets

to model epidemic outbreaks. The use of stochastic models that take into account non-

homogeneity and spatial distribution of population, make it imperative to use computational

resources to model epidemics. Over the past few decades, various computational modeling

paradigms have been applied to model epidemics. Stochastic models based on Markov chain

processes and Monte Carlo techniques, cellular automata modeling paradigm and agent-based

models are some of the significant computational models in literature

2.3.2.1. Cellular Automata. A cellular automaton is defined in Wolfram Mathworld as

a collection of cells on a grid of specified shape that evolves through a number of discrete

time steps according to a set of rules based on the states of neighboring cells [27]. Cellular

automata have been used for several decades for computational modeling in the sciences [26].

Cellular automata mainly depend on the dimensionality of the grid on which they are

modeled. One, two and three dimensional grids have been used in modeling. Each cell in a

one dimensional cellular automaton has a left and a right neighbor. Cells in two-dimensional

automata usually have four or eight cells in their neighborhood depending on von Neumann

neighborhood or Moore neighborhood respectively. Each cell is associated with a state, and

its state in the next generation is computed according to fixed rules using the states of cells

in its neighborhood [6].

In modeling epidemics, two-dimensional cellular automata with each cell representing

an individual and state of the cell corresponding to the individuals disease-state (i.e. suscep-
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tible, infectious or recovered) have been traditionally used. Classic cellular automata suffer

from neighborhood saturation, thus limiting the spread of the disease. Additionally, spread of

infection in an extended neighborhood in a single time-step is not possible [23].

2.3.2.2. Agent-Based Models. There has been a significant amount of work on using

agent-based models in computational epidemiology. In agent-based models, each individual

in the population of interest is represented as an autonomous agent. Interactions between

individual agents are modeled based on specific behavioral rules. An attempt is made to

model the epidemic more realistically by simulating the actions of each individual involved.

Consequently, agent-based models are computationally expensive and demand extensive com-

putational resources. Systems that make use of agent-based models for large populations

require high performance computing resources [24].

Some of the significant agent-based epidemic modeling efforts include BioWar [13]

which is a citywide multi-agent system that analyzes disease spread based on interactions from

social, health and professional networks and EpiSims [16] which uses data from TRANSIMS,

which is a simulation tool for transportation systems, among others. Agent-based systems

have been used on a smaller scale in studies such as analyzing tuberculosis outbreaks in

homeless shelters by Mikler et al.[22].

Agent-based models have the ability to capture the real-world mixing patterns, spatial

distribution and non-homogeneity of population, but are computationally expensive. They can

lead to cumulative modeling errors as a result of the choice of parameters used in modeling

individual behaviors.

2.3.2.3. Global Stochastic Field Simulation. Each of the computational modeling paradigms

mentioned above have specific strengths and weaknesses. Hybrid models that are based on

more than one of the above paradigms have been developed to leverage the positives of dif-

ferent approaches. Global stochastic field simulation (GSFS) proposed by Mikler et al. [24]

is one such model.

GSFS paradigm is a hybrid of agent-based simulation and cellular automata. The

geographic region is represented as a filed, which is an overlay of the spatial distribution of
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population into cells of a fixed number of individual. Unlike pure agent-based models statistics

of disease states for each cell are maintained. The interactions between geographic regions

are stochastic and occur globally instead of a well-defined neighborhood.
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CHAPTER 3

METHODOLOGY

Prior planning and preparedness for an impending epidemic outbreak requires public

health professionals and epidemiologists to study and analyze the disease dynamics in the host

population. Simulations of the epidemic outbreak provide a platform to perform these studies

and analyses. Techniques to visualize the epidemic propagation and disease dynamics greatly

help in effective and elegant interpretation of the simulations. In this section, a framework

for the simulation of an epidemic outbreak and visualization of disease dynamics in the host

population is introduced.

This framework must facilitate analysis of the characteristics of an outbreak, in order

to aid the decision making process of public health professionals. Duration of the outbreak,

numbers of infected people, sub populations more likely to be infected and their locations,

pattern of disease spread and spatial distribution of infection at any given time are some of

the characteristics public health professionals are interested in. Design choices pertaining to

the following framework components were made so as to cater to the above requirements:

• Geographic layout and distribution of population

• Disease transmission model

• Contact model

• Social behavior model

• Visualization

As part of this thesis, a simulator that models an epidemic outbreak in a region such

as a county has been developed. Census data have been used to classify population into

demographic groups relevant to the disease. Global stochastic contacts that are sensitive to

the spatial distribution of population are generated to simulate disease transmission based

on an SEIR (susceptible-exposed-infectious-recovered) compartmental epidemiological model.

Heat map representation has been used to depict disease dynamics.

The sections that follow describe the design and implementation of the simulator.
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3.1. Overview

The simulator models an epidemic outbreak and displays a visualization of the disease

dynamics. It draws relevant demographic data from census information of a county and mod-

els the disease spread based on initial infected population, infection parameters, demographics

and spatial distribution of the population in that region. The state of the epidemic as it prop-

agates is then depicted on a geographic map of the region to give a visual representation of

the extent, pattern and intensity of the disease spread.

The user-input for the simulator include the disease parameters for the epidemic,

demographic constraints based on which the epidemic has to be modeled and the region for

which disease spread has to be simulated. Entities representing census blocks in the region

are created and populated using census information classified on user-selected demographic

constraints. These census block entities are represented on the regions geographic map

with the help of GeoTools [5], a code library that provides standards compliant methods

for manipulation and representation of geospatial data. The user may then add infectious

population to the desired census blocks to initiate the epidemic simulation. Infectious contacts

are generated randomly for every population group in each census block, on the basis of

disease and demographic parameters. As the epidemic propagates through the region with

time, infection state of each census block at that time-step is depicted on the geographic map

using a color code representing the infection state. This provides users a visual representation

of the state of infection in the region at each time-step. The simulation ends when there are

no more people in the infected or latent compartments of the population. At the end of the

simulation, disease dynamics, duration and extent of the epidemic, pattern of spread, census

blocks prone to the infection are some of the aspects that can be studied and interpreted.

3.1.1. Input and Output

The simulator provides a platform for the user to model disease spread under differ-

ent settings and helps analyze the disease dynamics through visualization. The user may

experiment with different demographic and disease parameters, or initial conditions to ana-

lyze disease dynamics in various scenarios. The results produced from the simulation may be
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analyzed with the help of visualization through heat map representation or by the means of

SEIR plots.

The following are the inputs to be provided by the user before the start of simulation:

• Disease parameters: Infectivity, infectious and exposed periods of the disease.

• Demographic parameters: These are parameters specific to a demographic group.

They include average contact rate for each demographic group, social behavioral

parameters - affinity, mobility and reach.

• Census data: Census data pertaining to demographics and spatial population distri-

bution for the geographic region of interest on a census block basis.

• Geometry: Geometry of the geographic region to enable rendering the regions map

using GeoTools.

• Initial infected population: The initial infection scenario i.e. numbers of infected

and exposed individuals in infected census blocks before the start of the simulation.

The graphical user interface (GUI) for the simulator facilitates users to input disease

parameters for the epidemic, social behavioral parameters for desired demographic groups.

Infectious or exposed/latent population can be added either by selecting target census blocks

from a list or by choosing census blocks by clicking on the geographic map of the region.

Disease dynamics and epidemic propagation can be studied by iterating through each time

step of the simulation. At the end of each time step, the simulator outputs statistics of

susceptible, exposed, infectious and recovered individuals for every sub-population as wells as

cumulative numbers for the region. These per-time-step statistics can be used to develop

plots to study the outbreak. Additionally, for every time step, a heat map representation of

intensity of infection in each census block is rendered on a geographic map of the region.

With the aid of a color scheme to represent different infection intensities, this representation

helps in analyzing the dynamics of the outbreak.
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3.2. Simulator Design

The simulator retrieves population distribution and demographics from census data

based on user-specified demographic constraints. Epidemic propagation is simulated by means

of contacts between population sub-groups. Visualization of the simulation is facilitated with

the help of a heat-map representation of percentage of population that is infected.

The simulator is implemented using an object-oriented design paradigm. Population

statistics pertaining to each census block in the region are stored in objects representing

the census blocks. The contact model is derived from the global stochastic field simulation

modeling paradigm. SEIR model is used to represent the disease compartments. Methods

from GeoTools [5] are used to produce the heat-map representation.

This section describes the design of the simulator. The architecture, design choices

and motivation behind those choices, along with the technologies used are detailed in this

section.

3.2.1. Architecture

The simulators architecture is designed to retrieve relevant demographic data and spa-

tial distribution of host population from data repositories; model epidemic outbreaks based on

contact and disease transmission models; and provide a visualization of the disease dynamics.

The core components of the architecture, as shown in Figure 3.1 include:

• Databases that provide census, geographic data

• GUI for user input

• Contact model and transmission model for epidemic simulation

• Visualization methods

3.2.1.1. Functional Blocks. The processes performed by the simulator to produce and

visualize the epidemic as described above can be classified broadly into the categories below.

Figure 3.2 shows the core functional blocks of the simulator.

• Initialization: A platform is set up for the infection spread to be simulated. User in-

puts infection parameters, demographic parameters and social behavioral constraints
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Figure 3.1. Architecture of the simulator

for demographic groups via a graphical user interface. Database connections are set

up and demographic information is retrieved from the census database on the basis

of user selected demographic classification. Census block objects are created to

represent each census block of the region, and are populated using the census in-

formation. Necessary modifications are made to the database to hold the infection

state of each census block.

• Contact model: Contacts are generated between different demographic groups

within a census block and with other blocks to simulate the infection spread. Geo-

graphic distances between census blocks and population densities are made use of

to choose blocks to be contacted. The contact model is executed for every time

unit and the numbers of people in each disease compartment are updated at the
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end of each time unit.

• Visualization: A heat map is generated to represent the intensity of infection in each

census block. Methods from the GeoTools code library are made use of to represent

infection intensity of each block on the geographic map of the region, at the end of

each time unit. This provides a visual depiction of the disease spread in the region,

and an intuitive method to grasp the disease dynamics.

Figure 3.2. Core functional blocks of the simulator

3.2.2. Design Choices

Described in the sections that follow is the motivation behind the different design

choices made in developing the simulator:

3.2.2.1. Compartmental Model. The SEIR compartmental model of epidemiology has

been used to represent infection state. People are grouped into either of the S, E, I or R

disease compartments based on their exposure to the epidemic. Within each census block

object of the simulator, numbers of individuals in each compartment are maintained for every

demographic group in that block. As the epidemic progresses and people move from one

18



infection state to another, they are moved in between the disease compartments. Changes

to the disease compartments due to births, deaths or migration are not considered in this

model, as these changes are insignificant in the shorter time frame of the epidemic.

This simulator focuses on diseases where the host gains immunity to the disease after

recovering from the infection, i.e. diseases that adhere to the SEIR epidemiological model.

Outbreak simulations for contagious diseases that spread by the means of direct or indirect

interactions between infected and susceptible individuals, such as physical interactions or

interactions via a medium like air, can be developed using this simulator.

3.2.2.2. Geographic Granularity & Population Distribution. This simulator is designed

to simulate infectious disease spread for a geographic region such as a county. As census

data made available by the US Census Bureau is used by the simulator, the representation

of geographic entities as provided by the US Census Bureau is adopted. The hierarchical

representation of geographic entities provided by the Census Bureau, starting bottom-up

from a census block to a county can be seen in Figure 3.3 :

A census block, being the smallest geographic unit for which the Census Bureau

tabulates cumulative data [2], has been chosen as the geographical unit at the lowest level

of granularity in this thesis. A county usually consists of thousands of census blocks, with

each block providing cumulative social and demographic information. Each census block is

identified by its block identification number obtained from the census data. Furthermore,

every census block is associated with unique latitude and longitude coordinates. Spread

of the disease between different census blocks is estimated based on population counts of

participating census blocks and geographic distance between them. In the simulator, a county

is represented as an array of census block objects, with each object having its own data fields

to hold information about the census block it represents.

Most geographic regions with significant populations have a non-homogenous popu-

lation distribution. Census blocks vary in population densities ranging from vast unpopulated

blocks to smaller blocks with large populations. Figure 3.4 shows the population distribution

of Denton county. It can be seen that the population distribution is non-uniform, with certain
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Figure 3.3. Hirerarchy of geographic entities

Hierarchy of geographic entities as represented by US Census Bureau in Census 2000.

pockets having higher population densities while others are barely populated. The spatial

distribution of population in a region plays a critical role in determining the pattern of disease

spread and disease dynamics. Hence, it is important to consider the non-homogeneity and

spatial spread of the population while modeling an epidemic outbreak for a region.

In order to represent the actual spatial distribution and demographics of the region

in the simulation, real data has to be made use of. The 2000 US Census data, made

publicly available by the US Census Bureau through the American FactFinder web resource

is used to obtain the demographics and spatial distribution of population up to a census

block granularity for the region of interest. Within a census block, population is classified

into sub-groups, referred to as demographic groups, based on disease-specific demographic

constraints such as age or gender.
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Figure 3.4. Population distribution of Denton county, Texas

Population distribution of Denton county, Texas. At the top is the color scale; darker colors

represent larger population

3.2.2.3. Modeling Social Behavior. As mentioned above, the population is classified into

demographic groups, on the basis of disease-specific demographic constraints such as age

or gender. The simulator must recognize the fact that individuals belonging to different

demographic groups behave differently, not only with respect to contracting the infection,

but also differ in their social behavior. Social behavior of a demographic group affects the

spatial and temporal nature of disease spread. For example, a disease may have different

effects on people of different age groups. Children could be more prone to the infection

than middle-aged or old-aged people. The way children interact with middle-aged individuals

may differ from the way they interact with the old-aged ones. Old-aged individuals may

tend to stay within the vicinity of their homes, while middle-aged may tend to travel farther

[28]. These differences affect the way interactions between sub populations are modeled
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while simulating the epidemic outbreak. Hence, the differences in social behaviors of different

demographic groups must be accounted for, and accommodated in the disease spread model.

The parameters affinity, mobility and reach have been used to incorporate the dif-

ferences in social behaviors into the simulator. Each demographic group is associated with

user assigned values of affinities, mobility and reach. Affinity defines the likelihood of one

demographic group making a contact with another. The greater the affinity between two

participating demographic groups, the greater is the likelihood of the first group making a

contact with the second. Mobility influences the likelihood of a demographic group making

a contact within its home census block. The Smaller the value of mobility, the greater is

the likelihood of a contact being made within the same census block. Reach sets a limit on

the farthest census block from the home census block that can be reached by a demographic

group to make a contact. Each demographic group has its user assigned contact rate. It

should be noted that these parameters are defined for a demographic group, not an individ-

ual. They tend to reflect the effective average behavior of all individuals of the demographic

group.

3.2.2.4. Contact Model. An epidemic propagates in a population by means of infectious

contacts. A contact is an interaction between two individuals in the population that is

conducive to the spread of the disease. An infectious contact is a contact that actually

results in the disease passing on from the individual making the contact to the individual with

whom the contact is made. It should be noted that an infectious contact occurs only when

there is an interaction between an infected individual and a susceptible individual. In order to

simulate the disease spread, infectious contacts are generated within the population.

The people whom a person contacts on any given day are not pre-determined. Based

on the nature of disease transmission, the people who are being contacted may not even

know that they have been exposed to the infection. For instance, in the case of certain air

borne diseases, disease causing pathogens can remain suspended in air or travel distances

on air currents by means of dust particles or respiratory droplets. These pathogens can be

contracted by unrelated individuals. In order to model this unpredictability that exists in the
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transmission of a disease in the real world, stochasticity needs to be incorporated into the

contact model.

There have been different approaches to generating infectious contacts. These range

from simple deterministic models like the SIR model to stochastic agent based models where

contacts are generated probabilistically for every individual of the population. Deterministic

models tend to assume a homogeneous population distribution, ignoring the difference in the

ways different demographic groups behave during an epidemic. Agent based models, which

simulate the epidemic on a per-individual basis recognize the heterogeneity in a population

distribution, but model the behavior of every individual in the population resulting in a higher

computational overhead.

In order to take advantage of similarities in the day-to-day routines of people belonging

to the same demographic groups, at the same time recognizing the non-homogeneity in the

population, a hybrid approach has been chosen. In this thesis, a stochastic approach where

contacts are generated locally and globally on a per-demographic-group basis is used in an

attempt towards modeling the randomness that exists in the spread of an infection in the

real world. Generating contacts for each demographic-group rather than for every individual,

taking advantage of similarities in behaviors of individuals belonging to the same demographic

group, reduces the total number of contact generation operations. This results in a lower

computational overhead and shorter turn-around time, without making a compromise on

modeling heterogeneity in the population.

3.2.2.5. Visualization. Epidemiologists and public health personnel need to plan ahead

and be prepared to mitigate the outbreak of an epidemic. Having a prior idea of the sub

populations and regions likely to be effected helps in planning activities like stock piling

vaccinations, creating awareness etc. For this purpose, an estimation of the duration of

epidemic, numbers of infected people in different risk groups, and regions likely to be affected

would be immensely helpful. A simulation of the disease spread provides the above details

concerning the epidemic to aid the process of planning.

When the disease spread is simulated in a region as large as a county with thousands
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of census blocks, and hundreds of thousands of people, a large amount of data is produced

at each time step. It would be difficult to study the statistics corresponding to each census

block every time step. This brings in the need for an elegant way to study both the individual-

block-level and cumulative effect of the epidemic. In order to interpret all the data generated

and to understand the disease dynamics in an effective and intuitive way, it is important to

have a method to visualize the simulation. So as to serve the above purpose, this visualization

mechanism must depict the following:

• Localities affected by the epidemic

• Intensity of infection within a census block and

• Spatial and temporal propagation of the infection

In this simulator, visualization is provided by means of depicting disease dynamics on

a geographic map of the region where the epidemic is simulated. At each time step, intensity

of infection in each census block is shown using a heat map representation where infection

intensity is visualized by means of a color code. GeoTools, an open source Java code library

that provides methods to render maps using geospatial data is made use of to generate and

display heat maps of the region at each time step. Methods from GeoTools are used to

provide an interface to add infectious population, read shape files of the region from the

census database, and render a map along with intensity of infection for each block.

3.2.2.6. Choice of Technologies. The simulator has been implemented in Java program-

ing language on the NetBeans Development Environment. JDBC is used to connect to a

POSTGRESQL database that holds census data and the required data is retrieved from the

database using POSTGRESQL queries. Methods from GEOTools code library are used to

help visualize the disease dynamics on a geographic map of the county selected by the user.

The program is organized into different Java classes, each with appropriate methods and

variables, to perform sub tasks involved in producing the simulation.
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3.3. Simulator Implementation

Various approaches have been adopted by infectious disease spread simulators to model

an epidemic outbreak. In this thesis, a hybrid between the Global Stochastic Field Simulation

model and an agent-based model is proposed. This simulator uses an approach where the

disease spread in a region is modeled by utilizing the spatial distribution of population and

social behavioral constraints of demographic groups involved. Population is distributed into

different compartments on the basis of infection states and demographics. A global stochastic

contact model where infection spreads by the means of local and global contacts between

demographic groups in census blocks is applied. The geographic entity at the lowest level of

granularity that has been used in this model is the census block, while, a group of individuals

belonging to the same demographic group within a census block is the population unit at the

lowest level of granularity.

Figure 3.5 shows the process flow for the simulator. The simulator is initialized by

creating census block objects using demographic data retrieved from the census database.

Census data and user-inputs including disease parameters, social behavioral parameters are

inputted to the contact model to generate infectious contacts so as to simulate an outbreak.

Contacts are iteratively generated for all population sub-groups and statistics of infection

compartments are updated at the end of every time step. The intensity of infection in each

census block is displayed on a heat map generated using geometry of the region. The following

sections describe the implementation of these processes.

3.3.1. Compartmental Model

At any given time, different people have different levels of exposure to an epidemic.

As the epidemic progresses, people move from one state of infection to another. In order

to capture these differences in exposure to the epidemic, the SEIR compartmental model is

used in this thesis. Within a population sub group, people are classified into one of the sus-

ceptible(S), exposed(E), infectious(I), or recovered(R) compartments based on the infection

state they are in.

Individuals who are in the S compartment are susceptible to contracting the infection,
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Figure 3.5. Process flow diagram for the simulator
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while those who belong to the R compartment have recovered from the infection and acquired

immunity. E represents the ones who are infected, but are in the latent stage of the infec-

tion, thus, show symptoms but do not start transmitting the infection. The compartment I

constitutes of those individuals who are infected and actively transmit the infection to others.

The epidemic propagates by means of contacts made by individuals in infected (I)

compartment with the ones who are in susceptible(S) compartment. When a susceptible

person contracts the infection, he is moved to the exposed (E) compartment, beginning the

exposed or latent period of infection. At the end of the exposed (or latent) period, he is

moved to the infected (I) compartment, starting the infectious period when he contributes to

infection transmission. The person recovers at the end of infectious period and is then moved

to the recovered(R) compartment. All individuals who are in the recovered(R) compartment

acquire immunity to the infection. Figure 3.6 describes the transition of people between

infection compartments as they move from one infection state to another.

Figure 3.6. Representation of the SEIR disease transmission model

A representation of the SEIR disease transmission model used. This schematic shows the

progression of a host between disease compartments. Here, ep represents the duration of

exposed period and ip represents the duration of infectious period.

3.3.2. Geographic Layout

The simulator models disease spread for a geographic region such as a county. A

census block, being the smallest geographic unit for which complete cumulative census data
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is available, has been chosen as the geographic unit based upon which population distribution

is modeled . Hence, the region is represented as a conglomerate of individual census blocks,

which are unique in themselves.

3.3.2.1. Census Block. Every census block is identified by a unique identifier, referred to

as block-id that is deduced from the census block IDs in the census data. The block-id is an

integer between 0 and N-1 (both included), where N is the number of census blocks in the

region. Each census block is assigned a unique integer in [0, N − 1] as its block-ID. Every

census block is associated with unique latitude and longitude coordinates that represent its

geographic location. A census block with block-ID i , where i ∈ [0, N − 1] is denoted as Ci .

As mentioned previously, the simulator employs an object-oriented design. Each of

the census blocks that constitute the region of interest is instantiated as a census block

object. Population statistics of the census block are stored in its respective census block

object. At any time step t, a census block object Ci maintains Si j , Ei j , Ii j and Ri j where

Si j represents the number of susceptible individuals, Ei j - exposed, Ii j - infectious and Ri j -

recovered individuals in Ci who belong to the demographic group Dj .

3.3.2.2. Region. The geographic region for which the epidemic outbreak is modeled is a

collection of individual census blocks. It is represented as a collection of all the census block

objects that correspond to individual blocks. The geographical region R is defined as follows:

R = {Ci}wherei ∈ [0, N − 1]

Additionally,

∀Ci , Cj ∈ R,Ci ∩ Cj = Φ

3.3.2.3. Interaction Coefficient. Disease spread between census blocks is modeled by

means of interactions between demographic groups in participating census blocks. It is evi-

dent that a greater number of interactions tend to occur with populous blocks rather than

sparsely populated ones. Additionally, there is a smaller likelihood of interactions taking place

between blocks that are farther apart. Interaction coefficient, proposed by Mikler et al. in
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[24] models the likelihood of an interaction taking place between any two census blocks. It is

computed based on their population counts and the distance between them.

Interaction coefficient between two blocks is the product of the populations of the

blocks divided by the distance between them. For any two census blocks Cp, Cq, the interac-

tion coefficient is computed as shown in (4)

(4) IC (p, q) =
Pp ∗ Pq

dist (Cp, Cq)

The greater is the value of interaction coefficient; greater is the likelihood of interactions

between two census blocks.

Normalized Interaction Coefficient (ICi). The values of populations and distances between

census blocks can vary significantly for different pairs of census blocks. This may lead to large

variations in the values of interaction coefficients between different combinations of census

blocks, which necessitate normalization of interaction coefficients. The values of interaction

coefficients are normalized to a scale of 0 to 1, so as to minimize the variations. The

normalized interaction coefficients are stored in two-dimensional matrix Ṅ with each row

holding the normalized interaction coefficients for the block represented by it with every

other block. The normalized interaction coefficients for a census block, i.e. a row in the

two-dimensional matrix are computed as follows:

The j th column in the i th row of the matrix, representing the normalized interaction

coefficient between census blocks Ci and Cj respectively is given by

(5) Ṅi [j ] =
IC(i , j)∑N−1

k=0,k 6=i IC(i , k)

The normalized interaction coefficient matrix Ṅ is computed and stored at the beginning of

the simulation. The values of normalized interaction coefficients from Ṅ are used to calculate

global contacts made by a census block with external blocks.

3.3.2.4. Calculating Distances. The contact model which will be described in the subse-

quent sections, takes into account geographic distances between participating census blocks

when infectious contacts are generated. Latitude and longitude coordinates of census blocks

29



obtained from the census database are used to calculate distance between two census blocks.

The method used to calculate distances between census blocks is detailed in this section.

As a consequence of the earths surface being almost spherical, euclidian distance

which computes the straight line distance between two points in euclidian space, does not

give an accurate measure of the distance between any two points on the earth. In order

to calculate the shortest distance between two points over the earths surface, neglecting

the differences in elevation, great-circle distance between them is computed. Great-circle

distance, which is the shortest distance between any two points on the surface of a sphere,

gives a more accurate measure of the distance between any two points on the earths surface.

The Haversine formula, derived from the law of haversines in spherical trigonometry, gives

sufficiently accurate results for great-circle distances [28, 1]. Given, the latitude and longitude

coordinates of two points on the earths surface, the Haversine formula computes shortest

distance over the earths surface between those points.

The US Census Bureau uses a census blocks internal point to represent its geographic

location. Census data provides latitude and longitude coordinates of the internal points of all

census blocks. An internal point is a single point within a geographic entity - in this case a

census block - that represents its approximate geographic center. If the entities shape causes

the internal point to be located outside its boundary or in a water body, it is relocated to a

land area within the entity [2]. It represents the approximate geographic center of the block.

To calculate the distance between two census blocks, the Haversine formula is made

use of. Given the latitude and longitude coordinates of the internal points of any two census

blocks, the Havesrine formula is used to computes the shortest distance between them over

the earths surface. Shown below in (6) is the method used to compute distance between

census blocks P and Q using Haversine formula [28, 1]:

The terms latP and longP represent latitude and longitude coordinates respectively of

census block P, while latQ and longQ represent latitude and longitude coordinates respectively

of census block Q. Here, c is the angular distance in radians, and a is the square of half the
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chord length between census blocks P and Q.

(6) dist (P,Q) = R ∗ c

Where,

c = 2 ∗ atan2(
√
a,
√

1− a)

a = sin2 (δlat/2) + cos (latP ) · cos (latQ) · sin2 (δlong/2)

δlat = latQ− latP

δlong = longQ− longP

Here, R is the earth’s radius (mean radius = 6,317km)

3.3.3. Population Distribution

Population distribution of a geographic region with significant population is usually

non-homogeneous with respect to space and demographics. In order to model the non-

homogeneity and spatial distribution of the population, census data is made use of. Population

statistics and geographic coordinates of each census block are retrieved from the census

database for this purpose. Census blocks in this model differ from each other in terms of

population statistics, demographics and geographic location. So as to depict the spatial

distribution of population and differences in constitution of individual census blocks with

respect to population statistics, population distribution is modeled along the following lines,

as can be seen from Figure 3.7 :

• The population of the region is distributed into respective census blocks as per the

census data.

• Within a census block the population is classified into demographic groups based on

user-specified demographics.

• Additionally, within a demographic group, population is distributed into different

disease compartments corresponding to infection state.
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Let P be the set representing the human population in the region R, and Pi be the

population in a census block Ci . The population belonging to a demographic group Dj in block

Ci is represented as Pi j . Within the set Pi j ; Si j , Ei j , Ii j , Ri j represent the people in susceptible,

exposed, infectious and recovered states of disease respectively. The population distribution

at any time t is modeled as per the following expressions:

P (t) =

N−1∑
i=0

D−1∑
j=0

[Si j(t) + Ei j(t) + Ii j(t) + Ri j(t)](7a)

P = P1 ∪ P2 ∪ . . . ∪ PN(7b)

Pi ∩ Pj = Φfor any (i,j) | Ci , Cj ∈ R(7c)

Si j ∩ Ei j ∩ Ii j ∩ Ri j = Φ(7d)

Si j ∪ Ei j ∪ Ii j ∪ Ri j = Pi j(7e)

As a census block is the geographical entity at the lowest level of granularity, the spatial

distribution of population within a census block is not taken into account. It is assumed that

all the population of a census block is located at the approximate geographic center of the

block, as indicated by its latitude and coordinates in the census data. Furthermore, it is

assumed that there is no migration between census blocks, or migration from or migration

to external regions, since changes to population caused by migration are insignificant in the

time frame of an outbreak. At the end of any time step, the population or demographics of

a census block remain the same as that at the beginning. The changes within a census block

are limited to the epidemiological compartments.

3.3.3.1. Demographic Groups. The population within each census block is classified into

demographic groups based on demographics relevant to the epidemic being modeled. As

mentioned previously, these groups are chosen corresponding to demographics of the risk

groups for the epidemic. Each demographic group has differing social behaviors with respect

to the disease and when members of the group interact with other groups. These differences

in social behavior are captured using the parameters affinity, mobility and reach.

For a demographic group Dj ∈ D, the set of all demographic groups within a census
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block, and j ∈ [0, d − 1] where d is the number of demographic groups:

• Mobility of a demographic group Dj is denoted as mj , mj ∈ (0, 1). It is a measure

of the fraction of contacts made by the j th demographic group that are directed

towards groups in external blocks. A mobility value of 0 means that all contacts

made by the demographic group stay within the same census block, while a value of

1 means that all contacts are global, i.e. they happen with external census blocks.

• Reach denoted as reachj is a fractional number between 0 and 1. It is a measure

of the farthest census block that can be reached by the demographic group Dj . If

reachj equals 0, Dj can make contacts with blocks no farther than its home block,

while a value of 1 allows Dj to make contacts with any census block in the region.

• Affinity is a measure of the likelihood of a demographic group interacting with

another demographic group. It is a fractional value that measures the proportion

of total contacts made by a demographic group that are directed towards the other

group. Each demographic group has a value of affinity for every other group including

itself.

The values of affinities between different demographic groups are stored in the affinity matrix.

Affinity matrix A is defined as follows:

(8) A = [ai j ]i=0,1,...d−1;j=0,1,...d−1

where ai j is the affinity of demographic group Di with respect to Dj and,

d−1∑
j=0

ai j = 1

3.3.4. Contact Model

The disease spreads by the means of contacts between infected and susceptible popu-

lations. In this disease spread simulation, contacts are modeled between demographic groups.

People belonging to a demographic group in a census block can make contacts with people

belonging to the same group or another group either within the same census block or in an

external block. Not all contacts lead to spread of the disease. Only the contacts between an
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Figure 3.7. Population distribution model

Population distribution model. The geographic region on which the epidemic is modeled

consists of census blocks. Within a census block, the population is classified into

demographic groups. The population of a demographic group in turn is placed into disease

compartments.

infected person and a susceptible person lead to the spread of the disease. Hence, contacts

are generated only for the infected population. Infection parameters and factors like contact

rate, mobility, affinity and reach of the demographic groups involved influence the number

and extent of the infectious contacts generated.

During each time step in the course of the epidemic simulation, infectious contacts

are generated iteratively for every demographic group in each of the census blocks. These

contacts are distributed among susceptible populations based on the contact model described

below. The population statistics for a census block are updated at the end of every time step

to reflect the changes occurring in the numbers of people in different infection compartments

due to propagation of the infection.

Contacts between different demographic groups are generated on the basis of a contact

model. The contact model is implemented in accordance with the following ideology:

• Disease spread happens only by means of contacts originating from infected popu-

lation and directed towards susceptible population.
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• Different demographic groups differ in their day to day routines, and social interac-

tions with other groups.

• Contacts are more likely to happen with census blocks that are closer and have

a larger population rather than blocks that are farther away and have a smaller

population.

• There is an element of randomness that exists in the spread of an epidemic in the

real world, which brings in the need to incorporate stochasticity into the contact

model.

Algorithm 1 shows the pseudocode for implementation of contact model.

Input: Infection and social parameters, demographics and coordinates of census blocks

Output: Numbers of infection transmissions to demographic groups in each census

block

foreach CiεR do

foreach population group Ci j in Ci do

Li j = generateLocalContacts(Ci j);

Gi j = genrateGlobalContacts(Ci j);

foreach population group Cik in Ci do

L̇i j(k) = ψ ∗ LInfi j ∗ A [j, k ] ∗ Sik
Pik

;

assignLocalContcats(L̇i j(k));

end

disr ibuteGlobalContacts(Gi j);

end

end

Algorithm 1: Algorithm for contact model

3.3.4.1. Contact Rate. Contact rate is the average number of contacts an individual

makes in a particular time step, as defined earlier. In this model, each demographic group is

assigned a contact rate. All individuals in a census block belonging to the same demographic

group have the same contact rate. Average contact rate for a demographic group is user
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defined. However, in an effort to mimic real world variations, an element of randomness is

incorporated to contact rates. The average contact rate for a demographic group in a census

block is temporally distributed. At the end of every time step, the contact rate for the next

time step is drawn from a normal distribution.

3.3.4.2. Infectious Contacts. As mentioned above, infectious contacts are generated be-

tween demographics groups belonging to either the same or different census blocks. Within a

census block infectious contacts are generated iteratively for the infected population of each

demographic group. They are directed towards susceptible populations belonging to different

demographic groups in different census blocks. These infectious contacts can either be local,

i.e. within the same block or global, i.e. distributed among blocks other than the originating

block. The fraction of local and global infectious contacts depends on the parameter - mo-

bility of the demographic group that initiates the contacts. It should be noted that not all

infectious contact are effective, i.e. not all infectious contacts lead to the actual transmission

of the disease, due to factors such as immunity. The number of effective infectious contacts

is limited by the availability of susceptible population and infectivity of the epidemic.

At every time step, infectious contacts are generated iteratively for each demographic

group in a census block. The methodology for infectious contact generation for Ci j i.e. the

population represented by a demographic group DjD in a census block Ci ∈ R is described

below.

For any demographic group Dj in a census block Ci with a contact rate of i j , the total

number of contacts generated at time t is

(9) Pi j ∗ βi j(t)

where Pi j is the number of people belonging to demographic group Dj in census block Ci .

However, we are interested in contacts originating from people in the infectious state of the

disease. Hence number of infectious contacts would be a subset of (7),

(10) Infi j = Ii j ∗ CRi j(t)

The infectious contacts Infi j can either be local or global, i.e. intra-block or inter-block
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respectively. Let fi j (13) be the fraction of local infectious contacts, or in other words the

infectious contacts that are initiated by the demographic group Dj of census block Ci and

terminate within the same block. The number of local infectious contacts in this case is given

by LInfi j (11). Rest of the infectious contacts is global infectious contacts, i.e. infectious

contacts made with blocks other than Ci . The number of global infectious contacts is given

by Ginfi j (12).

(11) LInfi j = fi j ∗ Infi j

(12) GInfi j = (1− fi j) ∗ Infi j

The fraction fi j is computed as below:

(13) fi j = (1−mj)

where, mj is the value of mobility for demographic group Dj .

Not every non-infectious individual who is part of an infectious contact ends up being

infected, due to factors like virulence of the disease and immunity of the host. Infectivity of the

disease ψ, is a parameter that measures the number of individuals that are actually infected on

exposure to the infection. Taking into account the effect of infectivity, only a fraction of the

infectious contacts generated are effective in actual transmission of the disease. Furthermore,

it should to be noted that only the infectious contacts directed towards susceptible population

contribute towards infection propagation. Hence, the number of susceptible individuals in the

target group also influences the number of effective infectious contacts.

3.3.4.3. Local Contacts. The portion of local contacts Linfi j generated by Ci j that result

in infecting susceptible population is denoted by L̇i j (14). These contacts are distributed

among all the demographic groups present in the block Ci . The distribution of these contacts

is decided based on the affinity values between demographic groups obtained from the affinity

matrix. The number of susceptible individuals in the population group Cik who are infected
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as a result of the local contacts L̇i j is given by:

(14) L̇i j(k) = ψ ∗ LInfi j ∗ A [j, k ] ∗
Sik
Pik

where ψ denotes the infectivity of the disease, and A[j, k ] gives the value of affinity between

demographic groups Dj and Dk from the affinity matrix A. Hence, the number of people

belonging to the sub-group Cik , who contract the infection as a result of local contacts initi-

ated by the infectious population belonging to the sub-group Ci j is L̇i j(k). Those susceptible

individuals who contracted the infection now move into the latent state of infection. Num-

bers of people in appropriate disease compartments are updated to reflect the changes due

to disease transmission as described in the section .

3.3.4.4. Global Contacts. Global infectious contacts initiated by any demographic group

in a census block, are targeted towards susceptible populations of various demographic groups

in external census blocks. In order to complete these inter-block contacts, target blocks are

chosen randomly and infectious contacts are distributed among those randomly selected

blocks on the basis of interaction coefficient between participating blocks and reach of the

demographic group initiating the contact. Within the contacted census block, infectious

contacts are distributed among constituent demographic groups proportional to the value of

affinity between the demographic groups involved. The number of actual infection trans-

missions is weighed down by the availability of susceptible population and infectivity of the

disease. Below is a brief description of the methodology used to model global infectious

contacts:

• A target block is randomly chosen by drawing a random fractional number and

comparing it successively with cumulative normalized interaction coefficients until a

cumulative value that is greater than the random fractional number is found.

• A contact is assigned to the block represented by the cumulative interaction coef-

ficient obtained above, if it is within the reach of the demographic group initiating

the contact.

• The above process is repeated until all infectious global contacts initiated by the
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source group are distributed.

• Within each contacted census block, infectious contacts are distributed among con-

stituent demographic groups proportional to affinities between source and target

demographic groups.

For the population group Ci j , belonging to demographic group Dj in census

block Ci , the number of global infectious contacts generated is given by GInfi j as

computed in (12). Let Ġi j(Cx) be the number of contacts made by Ci j with a census

block Cx , randomly chosen confirming to Algorithm 2 such that,

Cx ∈ [0, N − 1] , x 6= ianddist (Cx , Ci) < maxDist ∗Υj

where Υj represents the value of reach associated with Dj .

The infectious contacts Ġi j(Cx) are distributed among the constituent demographic

groups of the contacted block Cx , weighted by their affinities. The number of effective

infectious contacts, i.e. the contacts that result in susceptible individuals getting infected,

made with a demographic group Dk in block Cx is given by (15).

(15) Ġi j (Cxk) = Ġi j (Cx) ∗ ψ ∗ A [j, k ] ∗
Sxk
Pxk

Hence, Ġi j(Cxk) is the number of people in the group Cxk who contract the infection as

a consequence of global infectious contacts made by the group Ci j . They are moved to

the corresponding exposed compartment and population statistics are updated as described

in section . Global infectious contacts GInfi j are distributed among all contacted external

census blocks Cx in accordance with Algorithm 2 so that,

(16) GInfi j =

N−1∑
x=0,a 6=i

Ġi j (Cx)

3.3.4.5. Update of Population Statistics. During each time step infectious contacts are

generated iteratively for every demographic group in each of the census blocks, as described

above. The disease transmissions that take place as a consequence of these infectious con-

tacts result in newly exposed population in the respective groups. Numbers of individuals in

susceptible and exposed disease compartments are updated to reflect this, as individuals who
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Input: Gi j - Number of contacts to be made globally by the group Ci j

Output: Array Ṅi of normalized interaction coefficients for block Ci

Array Ġ of contacts made with each census block

Initialize Ġ;

while Gi j > 0 do

Choose a fractional number x : 0 < x < 1 randomly ;

iccumulative = Ṅi [0] block = 0;

while iccumulative < xanddist (Cblock , Ci) < maxDist ∗Υj do

iccumulative = iccumulative + Ṅi [block ];

block = block + 1;

end

Ġ [block ] = Ġ [block ] + 1;

Gi j = Gi j1;

end

Algorithm 2: Algorithm for generating global contacts

contracted the infection move from susceptible to exposed state of the disease. At the end of

a time step, the population statistics of each group within a census block are updated as and

when infected people recover, or people in the exposed state become infectious. Specifically,

the following updates are made to the population statistics of a demographic group within a

census block to reflect the changes occurring due to disease transmission.

• Updates are made to susceptible and exposed populations of each group in a census

block to reflect disease transmissions that are a result of local and global contacts

made with it.

• People who recover from the disease, i.e. those who have been in the infectious

disease compartment for the duration of infectious period are moved to recovered

compartment.

• People who become infectious i.e. those who have been in the exposed compartment

for the duration of exposed period are moved to the infectious compartment.
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Susceptible, Exposed, Infectious, and Recovered populations Si j , Ei j , Ii j and Ri j respectively

of the group Ci j are updated as below:

Si j(t + 1) = Si j(t)−
D−1∑
k=0

L̇ik(j)−
N−1∑
a=0

D−1∑
b=0

Ġab(Ci j)(17a)

Ei j(t + 1) = Ei j(t) +

D−1∑
k=0

L̇ik(j) +

N−1∑
a=0

D−1∑
b=0

Ġab(Ci j)− êi j(t)(17b)

Ii j(t + 1) = Ii j(t) + êi j(t)− îi j(t)(17c)

Ri j(t + 1) = Ri j(t) + îi j(t)(17d)

Where êi j(t) and îi j(t) represent the number of individuals in the last day of their

exposed and infectious periods respectively in Ci j , D is the number of demographic groups

and N is the number of census blocks.

In a real-life system the number of contacts made by an individual does not remain

constant over time. In order to more realistically model the contact rate of each demographic

group, an element of randomness is introduced into the corresponding contact rates. Contact

rate for each demographic group in a census block is considered to be temporally distributed.

At the end of a time-step contact rate is updated using an adjustment factor δ, drawn from

a normal distribution.

At a time-step t, contact rate of individuals in a census-block i belonging to the

demographic group j at time t + 1 is computed as follows:

(18) CRi j(t + 1) = CRi j(t) ∗ (1 + δ ∗ ρ)

Where,

−1 < δ < 1 and 0 < ρ < 1

Here δ is a pseudo-random number drawn from a normal distribution with mean 0.0 and

standard deviation 1.0, and ρ is the parameter which sets an upper limit on the fraction by

which CRi j(t + 1) can vary from CRi j(t).
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3.3.5. Stochasticity

In order to model the inherent unpredictability that exists in disease transmission,

stochasticity is incorporated into the disease spread model. A factor of randomness is used

in the simulator in the following ways to incorporate stochasticity:

• Each time a new census block has to be contacted while global contacts are being

generated; it is chosen randomly with the help of a random number generator.

Feasibility of making contacts, and strength of contacts made with this block is

then decided based on factors spatial and social parameters.

• At the end of each time step, contact rates for all sub groups are updated by drawing

the new value number from a Gaussian distribution.

3.3.6. Visualization

A region such as a county usually has thousands of census blocks with hundreds of

thousands of people in it. When an epidemic outbreak simulation is executed for such a region

over a period of time, a large amount of data is produced, analysis of which is difficult. This

necessitates methods to enable study and analysis of the data produced through visualization.

The spread of the disease is displayed on an interactive geographic map of the region. A heat

map representation is used to depict the percentage of each census blocks population that

is infected, to provide a visual perception of the disease dynamics. Methods from GeoTools

code library are used to render maps using geometry of the region available in the census

database.

The visual interface that displays geographic map of the region in the context of the

disease spread has been designed to serve two main purposes:

• Displaying disease dynamics and intensity of infection in a census block on a geo-

graphic map as the epidemic progresses.

• Enabling inputting the initial infectious population by selecting target census blocks

on the geographic map.
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3.3.6.1. Heat Map. Intensity of infection in a census block is measured on the basis of

proportion of infected people in that block at a given time. It is represented as an integer on

a scale of 1 to 10, 1 being the least intensity and 10 being the highest. Intensity of infection

Inti in a census block Ci at a time t is given by:

(19) Inti = d
Ii
Pi
∗ 10e

Where Ii gives the number of infected people and Pi gives the total number of people

in census block Ci .

During each time step of the simulation, intensity of infection for every census block

is displayed on the geographic map using a color scheme. A color is associated with every

value of intensity of infection. Darker colors are used to depict larger values of intensity of

infection to provide a visual perception of disease dynamics.

GeoTools allows colors to be rendered as a layer over the geographic map. Colors

are associated with attributes of features of the geometry such as block-id or latitude and

longitude coordinates using certain rules. To render the heat map, rules that bind colors to

values of intensity of infection are applied. The color that is associated with the value of

intensity of infection in each census block is painted as a layer over the census block on the

map. As the simulation progresses, values of intensity of infection in each census block are

updated, and the map is re-rendered for every time step.

3.3.6.2. Block Selection. An initial infected population is needed to start off the epidemic

outbreak simulation. In order to experiment with different scenarios, the set of infected people

before the start of the simulation can be varied. Locations of the initial infectious people and

their numbers are some of the initial parameters that can be varied. The initial infectious

population can be inputted by selecting their locations on the map through the visual interface

as it is intuitive to choose census blocks by clicking on a map.

Once a user clicks on the map to select a census block so as to add infected popula-

tion, the block’s block-id and geographic coordinates are needed to update its statistics. A

mouse click event returns the screen position of the click event. This screen position has to
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be transformed to geographic coordinates to get hold of the census block that the user tries

to select. However, as mentioned previously, a census block’s geographic location is repre-

sented by the coordinates of its approximate geographic center. The transformed geographic

coordinates may not be matching with coordinates of the census blocks. In this case, the

block with geographic coordinates closest to the transformed ones are chosen. The following

approach is used to select the census block whose coordinates have the closest match to the

ones returned by the mouse click event:

• A 2x2 (in pixels) bounding box is constructed around the screen position of the

mouse-click.

• This bounding box is transformed to a bounding box with geographic map coordi-

nates.

• Features of the geometry (census blocks in this case) that overlap with this bounding

box are computed, and their attributes (ID, latitude and longitude) are retrieved.

• If there is more than one block overlapping with the bounding box, the block that

has the least distance from the selected point is chosen as the selected block.
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CHAPTER 4

EXPERIMENTS AND RESULTS

In this section, epidemic outbreak experiments performed using the simulator presented

above, and results from those experiments are presented. Disease spread simulations under

various conditions have been studied to analyze the behavior of the simulator to changes in

underlying parameters. The focus has been on studying the effect of disease parameters, social

behavioral parameters and demographic stratification on the propagation of an epidemic.

Experiments were designed so as to study the effect of these parameters on disease dynamics.

Simulations have been performed by varying the values of infectivity, number of demographic

groups and social behavioral parameters of those groups. The different experiments performed

and results obtained are presented in the sections that follow.

4.1. Experiments

All the experiments were conducted on Census 2000 data obtained for Denton county

in Texas. The census data made available by the US Census Bureau, provide the population

and demographic distribution used in these experiments. Denton county has a population

of 432976,and is divided into 7355 census blocks, as per Census 2000. The population

distribution of Denton county is shown on a geographic map in Figure 3.7.

As mentioned previously, the experiments are designed so as to examine the effect

of disease parameters, social behavioral parameters and demographic stratification on the

propagation of an epidemic. Comparative studies were performed by varying one of the

parameters and using fixed values for all other parameters so as to examine the effect of

individual parameters on the spread of disease. The experiments below study the effects of

the parameters - infectivity, contact rate, mobility, affinity and reach on the spread of the

disease. Different scenarios where the population is stratified using different demographic

constraints are presented below.
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4.1.1. Disease Parameters

In this section, experiments designed to measure the sensitivity of the simulator to

infectivity of the disease are presented.

4.1.1.1. Experiment: Infectivity. This experiment used Census 2000 data for Denton

county. In this experiment, no demographic stratification was made use of. Within a census

block all the population is considered as one group. Simulations were performed using different

values of infectivity. The spread of disease when the infectivity is 0.05 is compared with the

case where infectivity is 0.01. The parameters used in this experiment are shown in Table 4.1.

All the parameters here are set to model the ideal case, where the social behavioral parameters

do not limit the behavior of the simulator.

Table 4.1. Parameters used in experiment 1

Parameter Value

Number of Demographic Groups 1

Latent Period 2

Infectious Period 5

Affinity 1.0

Mobility 0.5

Reach 1.0

Contact Rate 25

To start off the simulation, 100 individuals belonging to the census block 2850 which

a population of 877, were infected.

4.1.2. Social Behavioral Parameters

The experiments designed to study the effect of social behavioral parameters on the

spread of disease are presented here. One of the parameters - contact rate, mobility, reach,

and affinity is varied, keeping all other parameters constant to compare differences in disease

spread patterns in different cases.
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4.1.2.1. Contact Rate. In this experiment, the effect of contact rate on the spread of

infection is analyzed. Simulations were performed using contact rates of 10 and 40. No

demographic stratification was used in this experiment. The values of parameters used in

this experiment are shown in Table 4.2.

Table 4.2. Parameters used in contact rate experiment

Parameter Value

Number of Demographic Groups 1

Latent Period 2

Infectious Period 5

Affinity 1.0

Mobility 0.5

Reach 1.0

To start off the simulation, 100 individuals belonging to the census block 2850 which

has a population of 877, were infected.

4.1.2.2. Mobility. In this experiment, the effect of the parameter - mobility - on the

spread of infection is analyzed. Simulations were performed using mobility values of 0.05 and

0.9. No demographic stratification was used in this experiment. The values of parameters

used in this experiment are shown in Table 4.3.

Table 4.3. Parameters used in mobility experiment

Parameter Value

Number of Demographic Groups 1

Latent Period 2

Infectious Period 5

Contact Rate 25

Affinity 1.0

Reach 1.0
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To start off the simulation, 100 individuals belonging to the census block 2850 which

has a population of 877, were infected.

4.1.2.3. Reach. In this experiment, the effect of the parameter - reach - on the spread

of infection is analyzed. Simulations were performed using reach values of 0.1 and 1.0. No

demographic stratification was used in this experiment. The values of parameters used in

this experiment are shown in Table 4.4.

Table 4.4. Parameters used in reach experiment

Parameter Value

Number of Demographic Groups 1

Latent Period 2

Infectious Period 5

Contact Rate 25

Affinity 1.0

Mobility 0.5

To start off the simulation, 100 individuals belonging to the census block 2850 which

has a population of 877, were infected.

4.1.3. Demographic Stratification

In the following experiments, spread of the disease when demographic stratification

is used is studied. Population is stratified on the basis of gender or age, and disease spread

patterns in different demographic groups are analyzed, when different social behavioral pa-

rameters are used for different groups.

4.1.3.1. Demographic: Gender. In this experiment, gender was used as the demographic.

Denton county has 215368 male individuals and 217608 female individuals in all as per Census

2010. Within each census block of Denton, the population was classified into male and female

demographic groups. The value of infectivity used here was 0.05. Parameters used in this

experiment are shown in Table 4.5. The male demographic group has a contact rate of 20
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while the female demographic group has a contact rate of 15. Affinity matrix used in this

experiment is shown in Table 4.6.

The purpose of this experiment is to demonstrate the applicability of the framework

to perform simulations using multiple demographic groups. For this purpose, similar values

have been used for the social behavioral parameters for both the groups, expecting similarities

in disease dynamics.

Table 4.5. Parameters used in gender experiment

Parameters Male Female

Contact Rate 20 15

Infectious Period 5 5

Latent Period 2 2

Mobility 0.7 0.5

Reach 0.75 0.5

Table 4.6. Affinity matrix for gender experiment

Affinity matrix Male Female

Male 0.6 0.4

Female 0.4 0.6

To start off the simulation, 85 male and 15 female individuals belonging to the census

block 2850 which has a population of 877, were infected.

4.1.3.2. Demographic: Age. This experiment used age as the demographic constraint.

The population was classified into 3 age groups: young-aged (0-17), middle-aged (18-54),

old aged (55+). Denton county has 131156 young-aged, 253186 middle-aged and 48634

old-aged individuals respectively, as per Census 2000. An Infectivity of 0.05 was used in this

experiment. Table 4.7 shows the parameters used in this experiment. The contact rates for

each demographic group and values of affinities between groups are based on the study by

Eubank et al. on social interactions between individuals of different age groups that lead to
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airborne diseases [16]. Affinity matrix, shown in Table 4.8, is constructed noting from [16]

that individuals of each age group tend to make most of the interactions with individuals

of the same group. In this experiment, mobility and reach are set based on the assumption

that middle-aged individuals travel further away from home, and make more interactions with

individuals from other census blocks, while old-aged individuals tend to stay closer to home.

Table 4.7. Parameters used in age experiment

Parameters Young(0-17) Middle(18-54) Old(55+)

Contact Rate 18 15 9

Infectious Period 5 5 5

Latent Period 2 2 2

Mobility 0.5 0.75 0.4

Reach 0.5 0.9 0.6

Table 4.8. Affinity matrix for experiment 3

Affinity matrix Young Middle Old

Young 0.6 0.3 0.1

Middle 0.3 0.5 0.2

Old 0.1 0.3 0.6

4.1.3.3. Effects of Demographic Stratification. In this experiment, the effects of de-

mographic stratification on the epidemic outbreak are studied. The outbreak obtained for

age-stratification is compared with the case where there is no demographic stratification.

The parameters used in the experiment, as can be seen from Table 4.9 are approximately

average values of those used in the experiment with 3 age-groups.

The second part of this experiment is a comparative study between gender-stratification

and age-stratification.

To start off the simulation, 11 young-aged, 86 middle-aged and 3 old-aged individuals

belonging to the census block 2850 which has a population of 877, were infected.

50



Table 4.9. Parameters used in experiment with no demographic stratification

Parameter Value

Number of Demographic Groups 1

Latent Period 2

Infectious Period 5

Affinity 1.0

Mobility 0.67

Reach 0.7

Contact Rate 15

4.2. Results

The results obtained after performing the experiments described in the previous section

are presented in this section. The results are analyzed and interpreted by means of plots and

heat maps to study the disease dynamics under various scenarios.

4.2.1. Disease Parameters

Experiments were performed to study the effect of diseases parameters on the spread

of disease. In particular, the effect of infectivity on disease dynamics is analyzed below.

4.2.1.1. Infectivity. In this experiment, all the social behavioral parameters were set to

model the ideal case, so as to study the disease spread when it is not influenced by any of

the social behavioral parameters. Two simulations were performed, the first one with an

infectivity of 0.05 and the other with an infectivity of 0.01, as described in the Experiments

section. The epidemic touched its peak on 29th day, when a little more than 4% of the

population was infectious, in the former case, while it reached the peak on 66th day when

about 1% of the population was infectious in case of the latter. It can be clearly seen from

Figure 4.2, which shows a comparison between the percentage of infectious individuals in

both the cases, that a higher value of infectivity leads to a shorter epidemic that infects a

larger number of individuals. The epidemic takes longer to reach its peak and die down when

infectivity is 0.01. Figure 4.3 shows a comparison of the intensity of infection when epidemic
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Figure 4.1. Infected population at start of simulation

The colored block at the bottom right is the initially infected block.

reaches its peak in both the cases.

4.2.2. Social Behavioral Parameters

The results obtained after performing experiments designed to study the effect of

social behavioral parameters on the disease dynamics are analyzed below.

4.2.2.1. Contact Rate. In this experiment, all the parameters were set to values shown

in Table 4.2. Experiments were performed using differing values of contact rate. Two

simulations were performed, the first one with a contact rate of 40 and the other with a

contact rate of 10, as described in the Experiments section. The epidemic touched its peak

on 32nd day, when about 3.5% of the population was infectious, in the former case, while
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Figure 4.2. Infectivity experiment: Comparison of % infectious

infectivity = 0.05 vs infectivity = 0.01

it reached the peak on 77th day when about 1% of the population was infectious in case of

the latter. It can be clearly seen from Figure 4.4, which shows a comparison between the

percentage of infectious individuals in both the cases, that a higher value of contact rate leads

to an epidemic that last for a shorter duration and infects a larger number of individuals. The

epidemic takes longer to reach its peak and die down when contact rate is 10. Figure 4.5

shows a comparison of the intensity of infection when epidemic reaches its peak in both the

cases.

4.2.2.2. Mobility. In this experiment, all the parameters were set to values shown in

Table 4.3. Experiments were performed using differing values of mobility. Two simulations

were performed, the first one with a mobility of 0.05 and the other with a mobility of 0.9, as

described in the Experiments section. The epidemic touched its peak on 72nd day, when a

little over 1% of the population was infectious, in the former case, while it reached the peak

on 25th day when about 6% of the population was infectious in case of the latter. It can be

clearly seen from Figure 4.6, which shows a comparison between the percentage of infectious

individuals in both the cases, that a higher value of mobility leads to an epidemic that last
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(a) (b) 

(c) 

Figure 4.3. Infectivity experiment: Intensity of infection

(a) Day 27 - Peak of the epidemic when infectivity = 0.05. (b) Day 66 - Peak of the

epidemic when infectivity = 0.01. (c) Color scale.

for a shorter duration and infects a larger number of individuals. The epidemic takes longer

to reach its peak and die down when mobility is 10. Figure 4.7 shows a comparison of the

intensity of infection when epidemic reaches its peak in both the cases. A larger value of

mobility leads to a larger number of global contacts being generated, resulting in a quicker,

more intense spread of the disease.

4.2.2.3. Reach. In this experiment, all the parameters were set to values shown in Ta-

ble 4.4. Experiments were performed using differing values of reach. Two simulations were

performed, the first one with a reach of 0.1 and the other with a mobility of 1.0, as described

in the Experiments section. The epidemic touched its peak on 23rd day, when close to 1%

of the population was infectious, in the former case, while it reached the peak on 25th day

when about 4% of the population was infectious in case of the latter. It can be clearly seen

from Figure 4.8, which shows a comparison between the percentage of infectious individuals
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Figure 4.4. Contact rate experiment: Comparison of % infectious

contact rate = 40 vs contact rate = 10

in both the cases, that a higher value of reach leads to an epidemic that last for a shorter

duration and infects a larger number of individuals. The epidemic takes longer to reach its

peak and die down when reach is 0.1. Figure 4.9 shows a comparison of the intensity of

infection when epidemic reaches its peak in both the cases. A larger value of reach leads to a

more extensive spread of the disease, while, a smaller value leads to a more localized spread.

4.2.3. Demographic Stratification

4.2.3.1. Demographic: Gender. In this experiment, population was classified based on

gender, as described earlier. The value of infectivity used was 0.05. Figure 4.10 shows the

Exposed-Infectious plot for this simulation. The epidemic reached its peak level on 21st day,

with about 45000 individuals being infectious. Figure 4.11 shows a comparison between the

percentages of infectious individuals in male and female population groups. The male group

reached its peak on the 20th day, while the female group reached its peak on 21st day of the

epidemic, both with about 10% of their respective populations being infectious.

Figure 4.12 shows the population distribution of male and female demographic groups

in Denton county at a census block level. It can be seen that there is similarity in the pop-
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Figure 4.5. Contact rate experiment: Intensity of infection

(a) Day 32 - Peak of the epidemic when contact rate = 40. (b) Day 77 - Peak of the

epidemic when contact rate = 10. (c) Color scale.

ulation distribution of both the demographic groups, with most blocks having a good mix

of male and female populations. As mentioned previously, this experiment was designed to

demonstrate the applicability of the framework to perform simulations on multiple demo-

graphic groups. Similar social behavioral parameter values were used for both the groups. As

a result, we can observe similarities in the disease dynamics in both the groups as can be seen

from Figure 4.13.

4.2.3.2. Demographic: Age. The demographic constraint used in this experiment was

age, with the population being classified into 3 age-groups as described earlier. The value of

infectivity used in this experiment was 0.05. The exposed-infectious plot for this simulation is

shown in Figure 4.14. The epidemic reached its peak on the 22nd day with about 42000 indi-

viduals being infectious on that day. Figure 4.15 shows a comparison between the percentages

of infectious individuals in the three age-groups. It can be seen that the epidemic reaches
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Figure 4.6. Mobility experiment: Comparison of % infectious

mobility = 0.05 vs mobility = 0.9

the peak quicker in young and old age-groups compared to middle age-group. Additionally,

the percentage of infectious at peak is more for young and old age-groups in contrast to

middle-aged. This can be attributed to higher values of affinities of these groups for contacts

among themselves, and smaller populations of these groups. It can also be observed that

larger populations lead to longer epidemics with shorter peaks.

Figure 4.16 shows the population distribution for the 3 age-groups. While young and

middle-aged are somewhat uniformly distributed, old-aged are more likely to be in certain

pockets. Figure 4.17 shows the intensity of infection in different census blocks of Denton

county, on the days when the epidemic touched its peak in each demographic group. At its

peak, infection prevalence in young-aged individuals shifts from blocks with a higher percent-

age of young-aged people to closer blocks with a moderate percentage of them, due to a

higher affinity for contact within the same group and moderate values of reach and mobil-

ity. Owing to larger values of mobility and reach, and some-what uniform affinities with all

groups, the infection prevalence in middle-aged population is widely spread out. In the case

of the old-aged demographic group, the infection spread is mostly confined to blocks around
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(a) (b) 

(c) 

Figure 4.7. Mobility experiment: Intensity of infection

(a) Day 72 - Peak of the epidemic when mobility = 0.05. (b) Day 25 - Peak of the

epidemic when mobility = 0.9. (c) Color scale.

the pockets where there is a larger density of old-aged individuals.

4.2.3.3. Effects of Demographic Stratification. Figure 4.18 shows a comparison between

the cases of no demographic stratification and age-stratification into 3 groups, with respect

to the number of infectious individuals on each day. It can be observed that the epidemic

peaks earlier and the number of infectious individuals when the epidemic peaks is larger in

case of 3 demographic groups. This behavior can be attributed to demographic stratification.

As infectious contacts are directed towards particular demographic groups, disease spread in

these groups is quicker. The epidemic recedes sooner due to fewer susceptible individuals

available, thus producing a shorter epidemic where larger numbers of people are infected.

Figure 4.19 shows a comparison between the numbers of infectious individuals in the

population in cases of age-stratification and gender-stratification. As the average values of

social behavioral parameters are similar in both the cases, we can see similarities in disease
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Figure 4.8. Reach experiment: Comparison of % infectious

reach = 0.1 vs reach = 1.0

dynamics.
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(a) (b) 

(c) 

Figure 4.9. Reach experiment: Intensity of infection

(a) Day 23 - Peak of the epidemic when reach = 0.1. (b) Day 25 - Peak of the epidemic

when reach = 1.0. (c) Color scale.

Figure 4.10. Exposed-infectious plot for gender experiment
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Figure 4.11. Gender experiment: % infectious: Male vs female

Figure 4.12. Gender experiment: Population distribution: male vs female

(a) Population distribution of male demographic group in Denton. (b) Population

distribution of female demographic group in Denton. (c) Color scale
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(a) (b) 

(c) 

Figure 4.13. Gender experiment: Intensity of infection

(a) Intensity of infection on day 20 among males. (b) Intensity of infection on day 21

among females. (c) Color scale

Figure 4.14. Exposed-infectious plot for experiment 3
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Figure 4.15. Age experiment- % infectious: age-group 1 vs age-group 2 vs

age-group 3
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Figure 4.16. Age experiment: Population distribution

(a) Age-group 1. (b) Age-group 2. (c) Age-group 3. (d) Color scale.
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(a) (b) (c) 

(d) 

Figure 4.17. Age experiment: Intensity of infection

(a) Day 19 - age-group 1. (b) Day 27 - age-group 2. (c) Day 22 - age-group 3. (d) Color

scale
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Figure 4.18. Number of infectious individuals: No demographic classification

vs 3 age-groups

Figure 4.19. Number of infectious indiviuals: Gender vs age
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CHAPTER 5

SUMMARY AND CONCLUSION

5.1. Summary

Epidemics have been recorded through-out the history and have caused significant

human and monetary losses. Localized epidemics, which have the potential to grow into

pandemics in an increasingly well-connected world, continue to pose a major threat. Prior

planning to prevent or control the occurrence of epidemics is crucial, and public health offi-

cials and epidemiologists work towards developing response plans to mitigate an impending

epidemic outbreak. However, the lack of reliable historic data due to under-reporting, emerg-

ing and re-emerging strains of diseases, and changing infrastructure in communities pose a

major challenge for public health professionals in developing response plans. This necessitates

simulation of disease spread to facilitate what-if analyses that help the process of preparing

for an epidemic outbreak.

As part of this thesis, a framework to simulate and visualize infectious disease spread

has been developed. The simulator uses census data to obtain spatial distribution of pop-

ulation. The population is stratified into demographic groups based on disease-specific de-

mographic constraints. Disease spread is simulated by means of contacts between infectious

and susceptible populations. The contact model is based on global stochastic field simulation

paradigm, where contacts are generated locally and globally for every demographic group in

each census block, randomly on the basis of population counts, geographic distance, disease

and demographic parameters. The disease dynamics are visualized by means of a heat-map

representation where a color scheme maps a color to the percentage of infected population

in a census block.

Experiments were performed to study the spread of disease under various scenar-

ios. Disease dynamics were studied by performing simulations using different disease and

demographic parameters. Infectivity of the disease and contact rate, affinity, mobility and

reach of different demographic groups were varied in different experiments. Experiments were
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performed using no demographic classification, gender as the demographic, and age as the

demographic for stratifying population. The census data for Denton county, Texas from US

Census 2000 was used in the experiments.

Varying infectivity affected the extent and duration of the epidemic. Greater values

of infectivity lead to outbreaks which peaked earlier, and infected larger number of people.

Spatial distribution of population played a significant role in the spread of the disease. Demo-

graphic groups with differing values of affinity, mobility and reach had differences in disease

dynamics, highlighting the role played by these parameters. Spatial distribution of popula-

tion in a region and population mix with respect to disease-specific demographics, play an

important role in the disease dynamics and pattern of disease spread in the region.

5.2. Future Work

While this framework provides a tool to study the spread of infectious diseases in a

geographic region based on spatial distribution of population and social behavioral parameters

of demographic groups, there is a lot of scope to enhance and extend it to provide more

intuitive and beneficial results.

The simulator now uses a single demographic such as age or gender as the demographic

constraint to stratify the population. This can be extended to include multiple demographics

on the basis of which, the population is stratified. For instance, a combination of race

and income levels can be used to stratify the population based on socio-economic factors.

Furthermore, the idea of local contacts, which are limited to the same census block where

the contacts originate, can be extended to include a group of adjoining census blocks, to

model places like universities, schools or large work-places.

Additional visualization methods to visualize the pattern of disease spread would be

very helpful in understanding the disease spread patterns. The representation of the region

as a graph with census blocks as vertices and infectious contacts as edges, with number

of infectious contacts being the weight of each edge would produce interesting results that

would be worth studying.
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GLOSSARY

Affinity: Affinity is the likelihood of a demographic group making a contact with

another demographic group, including itself. There is a value of affinity for every pair of

demographic groups. It is measured as the proportion of total contacts made by a group that

are directed towards the other group.

Census block: A census block is the smallest geographic entity for which the census

Bureau tabulates 100-percent data. Many census blocks correspond to individual city blocks

bounded by streets, but blocks especially in rural areas may include many square miles and

may have some boundaries that are not streets.

Contact: A contact is an interaction between any two individuals that is conducive

to the transmission of a disease, or disease causing pathogens. A contact may or may not

involve direct physical contact, depending on the nature of the disease involved.

Contact rate: Contact Rate is defined as the total number of contacts an individual

makes with all other individuals in the population per time unit.

Demographic group: A demographic group is a sub-group of the population defined by

demographic criteria like age, sex, ethnicity etc. The population is classified into demographic

groups based on a demographic that is relevant to the epidemic being modeled.

Exposed/Latent period: The time period between a host’s exposure to an infection

and becoming infectious.

Geometry: Geometry of a feature such as a census block is the shape of the region

available to GeoTools as represented in the census data.

Heat map: A heat map is a graphical representation of data where the values taken

by a variable in a two-dimensional map are represented as colors.

Infectious period: The duration for which an infected individual is capable of trans-

mitting the pathogen to a susceptible individual.

Infectivity: The proportion of people exposed to a pathogen that become infected.
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Interaction coefficient: Interaction coefficient between any two census blocks is a mea-

sure of the strength of interaction between them. It is directly proportion to the population

densities of the participating blocks and inversely proportional to the distance between them.

Internal point: An internal point is a single point within a geographic entity that

represents its approximate geographic center. It is used by the Census Bureau to denote the

geographic coordinates of an entity such as a census block which it represents.

Mobility: Mobility of a demographic group is the likelihood of a contact made by an

individual of the group being with a group in an external block.

Reach: Reach indicates the farthest census block that can be reached by a demo-

graphic group in a particular census block to make a contact. It is measured as a fraction of

the distance between census blocks that are farthest apart in the region.

Risk group: Risk group for a disease is a group of population identified by a demo-

graphic, which is at an elevated risk of contracting the disease than others. //check for

accuracy

Time step: A time step is the smallest unit of time used in the simulation. The

epidemic simulation is updated for every time step.

Transmission probability: Transmission probability is the probability of the successful

transfer of a pathogen from one host to another when a contact is made.
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