2 research outputs found

    CD206 Expression in Induced Microglia-Like Cells From Peripheral Blood as a Surrogate Biomarker for the Specific Immune Microenvironment of Neurosurgical Diseases Including Glioma.

    Get PDF
    Targeting the unique glioma immune microenvironment is a promising approach in developing breakthrough immunotherapy treatments. However, recent advances in immunotherapy, including the development of immune checkpoint inhibitors, have not improved the outcomes of patients with glioma. A way of monitoring biological activity of immune cells in neural tissues affected by glioma should be developed to address this lack of sensitivity to immunotherapy. Thus, in this study, we sought to examine the feasibility of non-invasive monitoring of glioma-associated microglia/macrophages (GAM) by utilizing our previously developed induced microglia-like (iMG) cells. Primary microglia (pMG) were isolated from surgically obtained brain tissues of 22 patients with neurological diseases. iMG cells were produced from monocytes extracted from the patients peripheral blood. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) revealed a significant correlation of the expression levels of representative markers for M1 and M2 microglia phenotypes between pMG and the corresponding iMG cells in each patient (Spearmans correlation coefficient = 0.5225, P <0.0001). Synchronous upregulation of CD206 expression levels was observed in most patients with glioma (6/9, 66.7%) and almost all patients with glioblastoma (4/5, 80%). Therefore, iMG cells can be used as a minimally invasive tool for monitoring the disease-related immunological state of GAM in various brain diseases, including glioma. CD206 upregulation detected in iMG cells can be used as a surrogate biomarker of glioma

    Angiogenic and inflammatory responses in human induced microglia-like (iMG) cells from patients with Moyamoya disease

    No full text
    Abstract Angiogenic factors associated with Moyamoya disease (MMD) are overexpressed in M2 polarized microglia in ischemic stroke, suggesting that microglia may be involved in the pathophysiology of MMD; however, existing approaches are not applicable to explore this hypothesis. Herein we applied blood induced microglial-like (iMG) cells. We recruited 25 adult patients with MMD and 24 healthy volunteers. Patients with MMD were subdivided into progressive (N = 7) or stable (N = 18) group whether novel symptoms or radiographic advancement of Suzuki stage within 1 year was observed or not. We produced 3 types of iMG cells; resting, M1-, and M2-induced cells from monocytes, then RNA sequencing followed by GO and KEGG pathway enrichment analysis and qPCR assay were performed. RNA sequencing of M2-induced iMG cells revealed that 600 genes were significantly upregulated (338) or downregulated (262) in patients with MMD. Inflammation and immune-related factors and angiogenesis-related factors were specifically associated with MMD in GO analysis. qPCR for MMP9, VEGFA, and TGFB1 expression validated these findings. This study is the first to demonstrate that M2 microglia may be involved in the angiogenic process of MMD. The iMG technique provides a promising approach to explore the bioactivity of microglia in cerebrovascular diseases
    corecore