52 research outputs found

    Failure of homologous synapsis and sex-specific reproduction problems

    Get PDF
    The prophase of meiosis I ensures the correct segregation of chromosomes to each daughter cell. This includes the pairing, synapsis, and recombination of homologous chromosomes. A subset of chromosomal abnormalities, including translocation and inversion, disturbs these processes, resulting in the failure to complete synapsis. This activates the meiotic pachytene checkpoint, and the gametes are fated to undergo cell cycle arrest and subsequent apoptosis. Spermatogenic cells appear to be more vulnerable to the pachytene checkpoint, and male carriers of chromosomal abnormalities are more susceptible to infertility. In contrast, oocytes tend to bypass the checkpoint and instead generate other problems, such as chromosome imbalance that often leads to recurrent pregnancy loss in female carriers. Recent advances in genetic manipulation technologies have increased our knowledge about the pachytene checkpoint and surveillance systems that detect chromosomal synapsis. This review focuses on the consequences of synapsis failure in humans and provides an overview of the mechanisms involved. We also discuss the sexual dimorphism of the involved pathways that leads to the differences in reproductive outcomes between males and females

    Cruciform extrusion propensity of human translocation-mediating palindromic AT-rich repeats

    Get PDF
    There is an emerging consensus that secondary structures of DNA have the potential for genomic instability. Palindromic AT-rich repeats (PATRRs) are a characteristic sequence identified at each breakpoint of the recurrent constitutional t(11;22) and t(17;22) translocations in humans, named PATRR22 (āˆ¼600ā€‰bp), PATRR11 (āˆ¼450ā€‰bp) and PATRR17 (āˆ¼190ā€‰bp). The secondary structure-forming propensity in vitro and the instability in vivo have been experimentally evaluated for various PATRRs that differ regarding their size and symmetry. At physiological ionic strength, a cruciform structure is most frequently observed for the symmetric PATRR22, less often for the symmetric PATRR11, but not for the other PATRRs. In wild-type E. coli, only these two PATRRs undergo extensive instability, consistent with the relatively high incidence of the t(11;22) in humans. The resultant deletions are putatively mediated by central cleavage by the structure-specific endonuclease SbcCD, indicating the possibility of a cruciform conformation in vivo. Insertion of a short spacer at the centre of the PATRR22 greatly reduces both its cruciform extrusion in vitro and instability in vivo. Taken together, cruciform extrusion propensity depends on the length and central symmetry of the PATRR, and is likely to determine the instability that leads to recurrent translocations in humans

    DNA secondary structure is influenced by genetic variation and alters susceptibility to de novo translocation

    Get PDF
    <p>Abstract</p> <p><b>Background</b></p> <p>Cumulative evidence suggests that DNA secondary structures impact DNA replication, transcription and genomic rearrangements. One of the best studied examples is the recurrent constitutional t(11;22) in humans that is mediated by potentially cruciform-forming sequences at the breakpoints, palindromic AT-rich repeats (PATRRs). We previously demonstrated that polymorphisms of PATRR sequences affect the frequency of <it>de novo </it>t(11;22)s in sperm samples from normal healthy males. These studies were designed to determine whether PATRR polymorphisms affect DNA secondary structure, thus leading to variation in translocation frequency.</p> <p><b>Methods</b></p> <p>We studied the potential for DNA cruciform formation for several PATRR11 polymorphic alleles using mobility shift analysis in gel electrophoresis as well as by direct visualization of the DNA by atomic force microscopy. The structural data for various alleles were compared with the frequency of <it>de novo </it>t(11;22)s the allele produced.</p> <p><b>Results</b></p> <p>The data indicate that the propensity for DNA cruciform structure of each polymorphic allele correlates with the frequency of <it>de novo </it>t(11;22)s produced (r = 0.77, <it>P </it>= 0.01).</p> <p><b>Conclusions</b></p> <p>Although indirect, our results strongly suggest that the PATRR adopts unstable cruciform structures during spermatogenesis that act as translocation hotspots in humans.</p

    A case with concurrent duplication, triplication, and uniparental isodisomy at 1q42.12-qter supporting microhomology-mediated break-induced replication model for replicative rearrangements

    Get PDF
    Background: Complex genomic rearrangements (CGRs) consisting of interstitial triplications in conjunction with uniparental isodisomy (isoUPD) have rarely been reported in patients with multiple congenital anomalies (MCA)/intellectual disability (ID). One-ended DNA break repair coupled with microhomology-mediated break-induced replication (MMBIR) has been recently proposed as a possible mechanism giving rise to interstitial copy number gains and distal isoUPD, although only a few cases providing supportive evidence in human congenital diseases with MCA have been documented. Case presentation: Here, we report on the chromosomal microarray (CMA)-based identification of the first known case with concurrent interstitial duplication at 1q42.12-q42.2 and triplication at 1q42.2-q43 followed by isoUPD for the remainder of chromosome 1q (at 1q43-qter). In distal 1q duplication/triplication overlapping with 1q42.12-q43, variable clinical features have been reported, and our 25-year-old patient with MCA/ID presented with some of these frequently described features. Further analyses including the precise mapping of breakpoint junctions within the CGR in a sequence level suggested that the CGR found in association with isoUPD in our case is a triplication with flanking duplications, characterized as a triplication with a particularly long duplication-inverted triplication-duplication (DUP-TRP/INV-DUP) structure. Because microhomology was observed in both junctions between the triplicated region and the flanking duplicated regions, our case provides supportive evidence for recently proposed replication-based mechanisms, such as MMBIR, underlying the formation of CGRs + isoUPD implicated in chromosomal disorders. Conclusions: To the best of our knowledge, this is the first case of CGRs + isoUPD observed in 1q and having DUP-TRP/INV-DUP structure with a long proximal duplication, which supports MMBIR-based model for genomic rearrangements. Molecular cytogenetic analyses using CMA containing single-nucleotide polymorphism probes with further analyses of the breakpoint junctions are recommended in cases suspected of having complex chromosomal abnormalities based on discrepancies between clinical and conventional cytogenetic findings

    Genotype determination of the OPN1LW/OPN1MW genes: novel disease-causing mechanisms in Japanese patients with blue cone monochromacy

    Get PDF
    Blue cone monochromacy (BCM) is characterized by loss of function of both OPN1LW (the first) and OPN1MW (the downstream) genes on the X chromosome. The purpose of this study was to investigate the first and downstream genes in the OPN1LW/OPN1MW array in four unrelated Japanese males with BCM. In Case 1, only one gene was present. Abnormalities were found in the promoter, which had a mixed unique profile of first and downstream gene promoters and a āˆ’71Aā€‰>ā€‰C substitution. As the promoter was active in the reporter assay, the cause of BCM remains unclear. In Case 2, the same novel mutation, M273K, was present in exon 5 of both genes in a two-gene array. The mutant pigments showed no absorbance at any of the wavelengths tested, suggesting that the mutation causes pigment dysfunction. Case 3 had a large deletion including the locus control region and entire first gene. Case 4 also had a large deletion involving exons 2ā€“6 of the first gene. As an intact LCR was present upstream and one apparently normal downstream gene was present, BCM in Case 4 was not ascribed solely to the deletion. The deletions in Cases 3 and 4 were considered to have been caused by non-homologous recombination

    Severe neurocognitive and growth disorders due to variation in THOC2, an essential component of nuclear mRNA export machinery

    Get PDF
    Highly conserved TREX-mediated mRNA export is emerging as a key pathway in neuronal development and differentiation. TREX subunit variants cause neurodevelopmental disorders (NDDs) by interfering with mRNA export from the cell nucleus to the cytoplasm. Previously we implicated four missense variants in the X-linked THOC2 gene in intellectual disability (ID). We now report an additional six affected individuals from five unrelated families with two de novo and threematernally inherited pathogenic or likely pathogenic variants in THOC2 extending the genotypic and phenotypic spectrum. These comprise three rare missense THOC2 variants that affect evolutionarily conserved amino acid residues and reduce protein stability and two with canonical splice-site THOC2 variants that result in C-terminally truncated THOC2 proteins.We present detailed clinical assessment and functional studies on a de novo variant in a female with an epileptic encephalopathy and discuss an additional four families with rare variants in THOC2 with supportive evidence for pathogenicity. Severe neurocognitive features, including movement and seizure disorders, were observed in this cohort. Taken together our data show that even subtle alterations to the canonical molecular pathways such asmRNAexport, otherwise essential for cellular life, can be compatible with life, but lead to NDDs in human

    Palindrome-mediated Translocations in Humans: A New Mechanistic Model for Gross Chromosomal Rearrangements

    No full text
    Palindromic DNA sequences, which can form secondary structures, are widely distributed in the human genome. Although the nature of the secondary structureā€”single-stranded hairpin or double-stranded cruciformā€”has been extensively investigated in vitro, the existence of such unusual non-B DNA in vivo remains controversial. Here, we review palindrome-mediated gross chromosomal rearrangements possibly induced by non-B DNA in humans. Recent advances in next-generation sequencing have not yet overcome the difficulty of palindromic sequence analysis. However, a dozen palindromic AT-rich repeat (PATRR) sequences have been identified at the breakpoints of recurrent or non-recurrent chromosomal translocations in humans. The breakages always occur at the center of the palindrome. Analyses of polymorphisms within the palindromes indicate that the symmetry and length of the palindrome affect the frequency of the de novo occurrence of these palindrome-mediated translocations, suggesting the involvement of non-B DNA. Indeed, experiments using a plasmid-based model system showed that the formation of non-B DNA is likely the key to palindrome-mediated genomic rearrangements. Some evidence implies a new mechanism that cruciform DNAs may come close together first in nucleus and illegitimately joined. Analysis of PATRR-mediated translocations in humans will provide further understanding of gross chromosomal rearrangements in many organisms
    • ā€¦
    corecore