129 research outputs found

    Mt. Graham: Optical turbulence vertical distribution at standard and high vertical resolution

    Full text link
    A characterization of the optical turbulence vertical distribution and all the main integrated astroclimatic parameters derived from the CN2 and the wind speed profiles above Mt. Graham is presented. The statistic includes measurements related to 43 nights done with a Generalized Scidar (GS) used in standard configuration with a vertical resolution of ~1 km on the whole 20-22 km and with the new technique (HVR-GS) in the first kilometer. The latter achieves a resolution of ~ 20-30 m in this region of the atmosphere. Measurements done in different periods of the year permit us to provide a seasonal variation analysis of the CN2. A discretized distribution of the typical CN2 profiles useful for the Ground Layer Adaptive Optics (GLAO) simulations is provided and a specific analysis for the LBT Laser Guide Star system ARGOS case is done including the calculation of the 'gray zones' for J, H and K bands. Mt. Graham confirms to be an excellent site with median values of the seeing without dome contribution equal to 0.72", the isoplanatic angle equal to 2.5" and the wavefront coherence time equal to 4.8 msec. We provide a cumulative distribution of the percentage of turbulence developed below H* where H* is included in the (0,1 km) range. We find that 50% of the whole turbulence develops in the first 80 m from the ground. The turbulence decreasing rate is very similar to what has been observed above Mauna Kea.Comment: 12 pages, 6 figures, Proc. SPIE Conference "Ground-based and Airborne Telescopes III", 27 June 2010, San Diego, California, US

    The low-frequency radio catalog of flat spectrum sources

    Full text link
    A well known property of the gamma-ray sources detected by COS-B in the 1970s, by the Compton Gamma-ray Observatory in the 1990s and recently by the Fermi observations is the presence of radio counterparts, in particular for those associated to extragalactic objects. This observational evidence is the basis of the radio-gamma-ray connection established for the class of active galactic nuclei known as blazars. In particular, the main spectral property of the radio counterparts associated with gamma-ray blazars is that they show a flat spectrum in the GHz frequency range. Our recent analysis dedicated to search blazar-like candidates as potential counterparts for the unidentified gamma-ray sources (UGSs) allowed us to extend the radio-gamma-ray connection in the MHz regime. We also showed that below 1 GHz blazars maintain flat radio spectra. Thus on the basis of these new results, we assembled a low-frequency radio catalog of flat spectrum sources built by combining the radio observations of the Westerbork Northern Sky Survey (WENSS) and of the Westerbork in the southern hemisphere (WISH) catalog with those of the NRAO Very Large Array Sky survey (NVSS). This could be used in the future to search for new, unknown blazar-like counterparts of the gamma-ray sources. First we found NVSS counterparts of WSRT radio sources and then we selected flat spectrum radio sources according to a new spectral criterion specifically defined for radio observations performed below 1 GHz. We also described the main properties of the catalog listing 28358 radio sources and their logN-logS distributions. Finally a comparison with with the Green Bank 6-cm radio source catalog has been performed to investigate the spectral shape of the low-frequency flat spectrum radio sources at higher frequencies.Comment: 10 pages, 10 figures, 1 table, ApJS published in 2014 (pre-proof version uploaded

    Optical spectroscopic observations of blazars and gamma-ray blazar candidates in the Sloan Digital Sky Survey Data Release Nine

    Full text link
    We present an analysis of the optical spectra available in the Sloan Digital Sky survey data release nine (SDSS DR9) for the blazars listed in the ROMA-BZCAT and for the gamma-ray blazar candidates selected according to their IR colors. First, we adopt a statistical approach based on MonteCarlo simulations to find the optical counterparts of the blazarslisted in the ROMA-BZCAT catalog. Then we crossmatched the SDSS spectroscopic catalog with our selected samples of blazars and gamma-ray blazar candidates searching for those with optical spectra available to classify our blazar-like sources and, whenever possible, to confirm their redshifts. Our main objectives are determining the classification of uncertain blazars listed in the ROMA-BZCAT and discovering new gamma-ray blazars. For the ROMA-BZCAT sources we investigated a sample of 84 blazars confirming the classification for 20 of them and obtaining 18 new redshift estimates. For the gamma-ray blazars, indicated as potential counterparts of unassociated Fermi sources or with uncertain nature, we established the blazar-like nature of 8 out the 27 sources analyzed and confirmed 14 classifications.Comment: 7 pages, 2 figures, 4 tables, AJ published in 2014 (pre-proof version

    The MURALES survey. I. A dual AGN in the radio galaxy 3C459?

    Get PDF
    We observed the FRII radio galaxy 3C459 (z=0.22) with the MUSE spectrograph at the Very Large Telescope (VLT) as part of the MURALES project (a MUse RAdio Loud Emission line Snapshot survey). We detected diffuse nuclear emission and a filamentary ionized gas structure forming a one-sided, triangular-shaped region extending out to ∼\sim80 kpc. The central emission line region is dominated by two compact knots of similar flux: the first (N1) cospatial with the radio core and the (N2) second located 1.2" (5.3 kpc) to the SE. The two regions differ dramatically from the point of view of velocity (with an offset of ~400 km/s), line widths, and line ratios. This suggests that we are observing a dual AGN system formed by a radio loud AGN and type 2 QSO companion, which is the result of the recent merger that also produced its disturbed host morphology. The alternative possibility that N2 is just a bright emission line knot resulting from, for example, a jet-cloud interaction, is disfavored because of 1) the presence of a high ionization bicone whose apex is located at N2; 2) the observed narrow line widths; 3) its line luminosity (~10^42 erg s-1) typical of luminous QSOs; and 4) its location, which is offset from the jet path. The putative secondary AGN must be highly obscured, since we do not detect any emission in the Chandra and infrared Hubble Space Telescope images.Comment: 6 pages, 6 figures, A&A in pres
    • …
    corecore