90 research outputs found
Dose-dependent decrease in anti-oxidant capacity of whole blood after irradiation: A novel potential marker for biodosimetry
Many reports have demonstrated that radiation stimulates reactive oxygen species (ROS) production by mitochondria for a few hours to a few days after irradiation. However, these studies were performed using cell lines, and there is a lack of information about redox homeostasis in irradiated animals and humans. Blood redox homeostasis reflects the body condition well and can be used as a diagnostic marker. However, most redox homeostasis studies have focused on plasma or serum, and the anti-oxidant capacity of whole blood has scarcely been investigated. Here, we report changes in the anti-oxidant capacity of whole blood after X-ray irradiation using C57BL/6 J mice. Whole-blood anti-oxidant capacity was measured by electron spin resonance (ESR) spin trapping using a novel spin-trapping agent, 2-diphenylphosphinoyl-2-methyl-3,4-dihydro-2H-pyrrole N-oxide (DPhPMPO). We found that whole-blood anti-oxidant capacity decreased in a dose-dependent manner (correlation factor, r > 0.9; P < 0.05) from 2 to 24 days after irradiation with 0.5–3 Gy. We further found that the red blood cell (RBC) glutathione level decreased and lipid peroxidation level increased in a dose-dependent manner from 2 to 6 days after irradiation. These findings suggest that blood redox state may be a useful biomarker for estimating exposure doses during nuclear and/or radiation accidents
Membrane vesicle-mediated bacterial communication
The classical quorum-sensing (QS) model is based on the assumption that diffusible signaling molecules accumulate in the culture medium until they reach a critical concentration upon which expression of target genes is triggered. Here we demonstrate that the hydrophobic signal N-hexadecanoyl-L-homoserine lactone, which is produced by Paracoccus sp., is released from cells by the aid of membrane vesicles (MVs). Packed into MVs, the signal is not only solubilized in an aqueous environment but is also delivered with varying propensities to different bacteria. We propose a novel MV-based mechanism for binary trafficking of hydrophobic signal molecules, which may be particularly relevant for bacteria that live in open aqueous environments
Radiation Eye Dose for Physicians in CT Fluoroscopy-Guided Biopsy
It is important to evaluate the radiation eye dose (3 mm dose equivalent, Hp (3)) received by physicians during computed tomography fluoroscopy (CTF)-guided biopsy, as physicians are close to the source of scattered radiation. In this study, we measured the radiation eye dose in Hp (3) received by one physician during CTF in a timeframe of 18 months using a direct eye dosimeter, the DOSIRISTM. The physician placed eye dosimeters above and under their lead (Pb) eyeglasses. We recorded the occupational radiation dose received using a neck dosimeter, gathered CT dose-related parameters (e.g., CT-fluoroscopic acquisition number, CT-fluoroscopic time, and CT-fluoroscopic mAs), and performed a total of 95 procedures during CTF-guided biopsies. We also estimated the eye dose (Hp (3)) received using neck personal dosimeters and CT dose-related parameters. The physician eye doses (right and left side) received in terms of Hp (3) without the use of Pb eyeglasses for 18 months were 2.25 and 2.06 mSv, respectively. The protective effect of the Pb eyeglasses (0.5 mm Pb) on the right and left sides during CTF procedures was 27.8 and 37.5%, respectively. This study proved the existence of significant correlations between the eye and neck dose measurement (right and left sides, R2 = 0.82 and R2 = 0.55, respectively) in physicians. In addition, we found significant correlations between CT-related parameters, such as CT-fluoroscopy mAs, and radiation eye doses (right and left sides, R2 = 0.50 and R2 = 0.52, respectively). The eye dose of Hp (3) received in CTF was underestimated when evaluated using neck dosimeters. Therefore, we suggest that the physician involved in CTF use a direct eye dosimeter such as the DOSIRIS for the accurate evaluation of their eye lens dose
- …