13 research outputs found

    Rapid deployment valve system shortens operative times for aortic valve replacement through right anterior minithoracotomy

    No full text
    Background: There is growing evidence from the literature that right anterior minithoracotomy aortic valve replacement (RAT-AVR) improves clinical outcome. However, increased cross clamp time is the strongest argument for surgeons not performing RAT-AVR. Rapid deployment aortic valve systems have the potential to decrease cross-clamp time and ease this procedure. We assessed clinical outcome of rapid deployment and conventional valves through RAT. Methods: Sixty-eight patients (mean age 76 ± 6 years, 32% females) underwent RAT-AVR between 9/2013 and 7/2015. According to the valve type implanted the patients were divided into two groups. In 43 patients (R-group; mean age 74.1 ± 6.6 years) a rapid deployment valve system (Edwards Intuity, Edwards Lifesciences Corp; Irvine, Calif) and in 25 patients (C-group; mean age 74.2 ± 6.6 years) a conventional stented biological aortic valve was implanted. Results: Aortic cross-clamp (42.1 ± 12 min vs. 68.3 ± 20.3 min; p < 0.001) and bypass time (80.4 ± 39.3 min vs. 106.6 ± 23.2 min; p = 0.001) were shorter in the rapid deployment group (R-group). We observed no differences in clinical outcome. Postoperative gradients (R-group: max gradient, 14.3 ± 8 mmHg vs. 15.5 ± 5 mmHg (C-group), mean gradient, 9.2 ± 1.7 mmHg (R-group) vs. 9.1 ± 2.3 mmHg (C-group) revealed no differences. However, larger prostheses were implanted in C-group (25 mm; IQR 23–27 mm vs. 23 mm; IQR 21–25; p = 0.009). Conclusions: Our data suggest that the rapid deployment aortic valve system reduced cross clamp and bypass time in patients undergoing RAT-AVR with similar hemodynamics as with larger size stented prosthesis. However, larger studies and long-term follow-up are mandatory to confirm our findings

    Cardio-Hepatic Interaction in Cardiac Amyloidosis

    No full text
    Background: Congestion is associated with poor prognosis in cardiac amyloidosis (CA). The cardio-hepatic interaction and the prognostic impact of secondary liver affection by cardiac congestion in CA are poorly understood and require further characterisation. Methods: Participants of the amyloidosis cohort study AmyKoS at the Interdisciplinary Amyloidosis Centre of Northern Bavaria with proven transthyretin (ATTR-CA) and light chain CA (AL-CA) underwent serial work-up including laboratory tests, echocardiography, and in-depth hepatic assessment by vibration-controlled transient elastography (VCTE) and 13C-methacetin breath test. Results: In total, 74 patients with AL-CA (n = 17), ATTR-CA (n = 26) and the controls (n = 31) were analysed. ATTR-CA patients showed decreased microsomal liver function expressed by maximal percentage of dose rate (PDRpeak) related to hepatic congestion. Reduced PDRpeak in AL-CA could result from altered pharmacokinetics due to changed hepatic blood flow. Liver stiffness as a combined surrogate of chronic liver damage and congestion was identified as a predictor of all-cause mortality. Statistical modelling of the cardio-hepatic interaction revealed septum thickness, NT-proBNP and PDRpeak as predictors of liver stiffness in both CA subtypes; dilatation of liver veins and the fibrosis score FIB-4 were only significant for ATTR-CA. Conclusions: Non-invasive methods allow us to characterise CA-associated hepatic pathophysiology. Liver stiffness might be promising for risk stratification in CA

    ILC Reference Design Report Volume 4 - Detectors

    No full text
    This report, Volume IV of the International Linear Collider Reference Design Report, describes the detectors which will record and measure the charged and neutral particles produced in the ILC's high energy e+e- collisions. The physics of the ILC, and the environment of the machine-detector interface, pose new challenges for detector design. Several conceptual designs for the detector promise the needed performance, and ongoing detector R&D is addressing the outstanding technological issues. Two such detectors, operating in push-pull mode, perfectly instrument the ILC interaction region, and access the full potential of ILC physics.This report, Volume IV of the International Linear Collider Reference Design Report, describes the detectors which will record and measure the charged and neutral particles produced in the ILC's high energy e+e- collisions. The physics of the ILC, and the environment of the machine-detector interface, pose new challenges for detector design. Several conceptual designs for the detector promise the needed performance, and ongoing detector R&D is addressing the outstanding technological issues. Two such detectors, operating in push-pull mode, perfectly instrument the ILC interaction region, and access the full potential of ILC physics

    ILC Reference Design Report Volume 3 - Accelerator

    No full text
    The International Linear Collider (ILC) is a 200-500 GeV center-of-mass high-luminosity linear electron-positron collider, based on 1.3 GHz superconducting radio-frequency (SCRF) accelerating cavities. The ILC has a total footprint of about 31 km and is designed for a peak luminosity of 2x10^34 cm^-2 s^-1. The complex includes a polarized electron source, an undulator-based positron source, two 6.7 km circumference damping rings, two-stage bunch compressors, two 11 km long main linacs and a 4.5 km long beam delivery system. This report is Volume III (Accelerator) of the four volume Reference Design Report, which describes the design and cost of the ILC.The International Linear Collider (ILC) is a 200-500 GeV center-of-mass high-luminosity linear electron-positron collider, based on 1.3 GHz superconducting radio-frequency (SCRF) accelerating cavities. The ILC has a total footprint of about 31 km and is designed for a peak luminosity of 2x10^34 cm^-2 s^-1. The complex includes a polarized electron source, an undulator-based positron source, two 6.7 km circumference damping rings, two-stage bunch compressors, two 11 km long main linacs and a 4.5 km long beam delivery system. This report is Volume III (Accelerator) of the four volume Reference Design Report, which describes the design and cost of the ILC

    ILC Reference Design Report Volume 1 - Executive Summary

    No full text
    The International Linear Collider (ILC) is a 200-500 GeV center-of-mass high-luminosity linear electron-positron collider, based on 1.3 GHz superconducting radio-frequency (SCRF) accelerating cavities. The ILC has a total footprint of about 31 km and is designed for a peak luminosity of 2x10^34 cm^-2s^-1. This report is the Executive Summary (Volume I) of the four volume Reference Design Report. It gives an overview of the physics at the ILC, the accelerator design and value estimate, the detector concepts, and the next steps towards project realization.The International Linear Collider (ILC) is a 200-500 GeV center-of-mass high-luminosity linear electron-positron collider, based on 1.3 GHz superconducting radio-frequency (SCRF) accelerating cavities. The ILC has a total footprint of about 31 km and is designed for a peak luminosity of 2x10^34 cm^-2s^-1. This report is the Executive Summary (Volume I) of the four volume Reference Design Report. It gives an overview of the physics at the ILC, the accelerator design and value estimate, the detector concepts, and the next steps towards project realization
    corecore