14 research outputs found

    THE EFFECT OF FLUID CATALYTIC CRACKING CATALYST WASTE ON REFRACTORY CASTABLE PROPERTIES

    No full text
    The fluid catalytic cracking (FCC) catalyst waste (CW) is eroded catalyst debris from the cracking unit, which is collected by an electrostatic precipitator. CW is zeolite material, which unique properties are underused in refractory castable production technology. This work deals with untreated CW and thermally treated - CWt. The hydration and structure development of cementitous compositions with CW and CWt were investigated. In comparison with CW, CWt is a considerably softer accelerating additive of cement hydration and a certain amount of this additive (10 - 20 %) markedly increases the compressive strength of cementitious stone. The impact of CWt additive on refractory castable properties was investigated. It was established that the increase of CWt additive content causes the increase of castable compressive strength and decrease of shrinkage, ensures a more compact structure of castable and best thermal durability versus analogical castable without the additive

    THE EFFECT OF POZZOLANIC WASTE OF DIFFERENT NATURE ON THE HYDRATION PRODUCTS, STRUCTURE AND PROPERTIES OF HARDENED CEMENT PASTE

    No full text
    The paper analyses the effect of different pozzolanic waste - ground waste glass, metakaolin and addition made of ground waste glass and metakaolin, on cement hydration and physical-mechanical properties of hardened cement paste. Four batches of specimens were made for the tests. Cement (C) in the cement matrix was replaced with 5% of ground waste glass (5S), 15 % of metakaolin and mixed pozzolanic was addition (MIX 20) made of 5% of ground waste glass and 15 % of metakaolin. The best improvement of mechanical properties after 90 days of curing was observed in the specimens modified with the mixed pozzolanic addition. X-ray, TGA tests and microstructure analysis revealed that the improvement of mechanical properties is caused by the higher content of hydration products and a strong contact zone between glass particles and foam glass splinters present in metakaolin waste addition. The formation of C-S-H hydrates on the surface of glass foam splinters and in the pores was also observed. This kind of microstructure formation has a positive effect on cement matrix microstructure and physical-mechanical properties of hardened cement paste

    Hemp Shive-Based Bio-Composites Bounded by Potato Starch Binder: The Roles of Aggregate Particle Size and Aspect Ratio

    No full text
    According to European regulations, the construction industry supports and strives to save non-renewable natural resources, increases the share of reusable resources in production and attempts to use renewable natural resources as much as possible by creating alternative building materials, such as bio-composites. Various building materials containing hemp shives (HS) are relatively popular and are often used in practice. The properties of these materials vary widely due to the usage of significantly different binders and because the parameters of the HS can significantly affect the properties of the bio-composite. Potato starch (PS), the properties of which have not been studied extensively in the past, was used as a binder in this study. Depending on the type of manufacturing process and technology employed for hemp fibre production, the HS particle shape and size can vary widely, which leads to the following statement: the properties of bio-composites produced by using the same method, but with different HS, may differ significantly. In order to investigate the effects of HS on the properties of bio-composites, including the hydro-thermal properties, an in-depth study was conducted to examine the structure, the physical properties and the particle size of HS. It was discovered that in order to obtain a material of higher compressive strength, the HS with smaller dimensions should be used; however, if enhanced thermal properties are required, the HS with longer particles should be used

    THE EFFECT OF CRYSTALLIZING ADMIXTURE ON THE PROPERTIES AND SHRINKAGE OF CONCRETE

    No full text
    This study investigates the effect of the amount (from 0.6 % to 1.4 %) of crystallizing admixture (CA) on the shrinkage, density, porosity and mechanical properties of concrete specimens. A higher content of CA increased the total porosity of concrete from 10.6 % to 11.15 %. In contrast to the specimens containing 0.8- 1.0% of CA, the lowest amount of closed pores and highest total porosity was observed in the specimens containing 1.2 %-1.4 % of the CA. Compared to the control specimen, concrete specimens containing 1.4 % of CA showed a 5.4 % decrease in flexural strength and a 13.6 % decrease in compressive strength after 28 days of curing. The specimens containing 0.9 %-1.0 % of CA demonstrated the lowest shrinkage in the period of 190 days. The shrinkage of these specimens reduced 4.8 %-4.9 % compared to the control specimen. Higher content of CA had an opposite effect on the shrinkage, a short-term expansion of specimens was observed after 28-56 days. Taking into account all the properties of the concrete specimen, the optimum amount of CA, which could prevent cracks in the structures is 1.0% of the cement mass

    Development of Cordierite Ceramics from Natural Raw Materials

    No full text
    Cordierite ceramics are known for their low CTE and high compressive strength values which affords them place in fields where demanding thermal and mechanical properties are required. Development of such ceramics is greatly dependent on materials used. If raw materials are used formation of additional phases and pore/glass formation is expected. The purpose of this research is to examine the process of cordierite development from mixed compositions formed from precursors of the natural raw materials as illite clay, dolomite and quartz sand and synthetic additives – MgO, Ξ³-Al2O3 and their influence on thermal and mechanical properties. It is verified that the addition of 10 wt.% of illite clay and about 20-21 wt.% dolomite in staring compositions at the sintering temperature of 1200 Β°C results in the development of dense ceramic material with perfect-shaped crystalline cordierite phase and secondary anorthite phase. Sintered cordierite ceramics have been tested, among other properties, for their compressive strength, coefficient of thermal expansion and modulus of elasticity after 20 cycles of thermal shock treatment

    A Study of Metal-Cement Composites with Additives

    No full text
    The application of small-sized metal fillers (SMF) provides a combination of high bulk density, increased durability and ferromagnetic properties of composite materials on the cement basis. However, the total strength of the composite can be compromised by poor adhesion of metal particles with the cement matrix. The use of versatile additives like microsilica and metakaolin is able to improve the structural integrity and mechanical properties of heavy concretes. The paper considers the results of a study using specimens of heavy concretes with SMF aiming to estimate its strength, structural features and ultrasonic parameters. It was found that the contact of SMF particles with the cement was not perfect, since the voids appeared between them and the cement matrix during the cement hydration process (exothermal reaction). Due to the border porosity, the specimens with the metal fillers have lower compressive strength, lower ultrasound velocity and increased frequency slope of attenuation. Microsilica and metakaolin additives facilitate better contact zone between the cement matrix and metal fillers

    ИсслСдованиС ΠΏΠΎΡ€ΠΎΠ²ΠΎΠ³ΠΎ пространства Π² ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΡ†Π΅ΠΌΠ΅Π½Ρ‚Π½Ρ‹Ρ… ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π°Ρ…

    No full text
    Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅. ΠœΠ΅Ρ‚Π°Π»Π»ΠΎΡ†Π΅ΠΌΠ΅Π½Ρ‚Π½Ρ‹Π΅ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Ρ‹ (МЦК), Π² частно-сти тяТСлыС Π±Π΅Ρ‚ΠΎΠ½Ρ‹ (Π’Π‘) с ΠΏΠ»ΠΎΡ‚Π½ΠΎΡΡ‚ΡŒΡŽ 4 Ρ‚/ΠΌ3 ΠΈ Π²Ρ‹ΡˆΠ΅, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΒ¬ΡŽΡ‚ΡΡ для изготовлСния балластов ΠΈ ΠΏΡ€ΠΈΠ³Ρ€ΡƒΠ·ΠΎΠ² Π² ΠΏΠΎΡ€Ρ‚ΠΎΠ²ΠΎΠΌ ΡΡ‚Ρ€ΠΎΒ¬ΠΈΡ‚Π΅Π»ΡŒΡΡ‚Π²Π΅, для ΠΏΠ»Π°Π²ΡƒΡ‡ΠΈΡ… Π½Π΅Ρ„Ρ‚Π΅Π³Π°Π·ΠΎΠ²Ρ‹Ρ… ΠΏΠ»Π°Ρ‚Ρ„ΠΎΡ€ΠΌ, элСмСнтов Π·Π°Β¬Ρ‰ΠΈΡ‚Ρ‹ ΠΏΠΎΠ΄Π²ΠΎΠ΄Π½Ρ‹Ρ… Ρ‚Ρ€ΡƒΠ±ΠΎΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΎΠ², стабилизации Π³Ρ€ΡƒΠ½Ρ‚Π°, Π·Π°Ρ‰ΠΈΡ‚Ρ‹ ΠΎΡ‚ элСктромагнитного воздСйствия ΠΈ Ρ‚. Π΄. [1]. Π’ качСствС мСтал¬личСских Π·Π°ΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»Π΅ΠΉ ΠΌΠΎΠ³ΡƒΡ‚ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ ΠΎΡ‚Ρ…ΠΎΠ΄Ρ‹ ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎ-ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ. Π’Π°ΠΊΠΈΠ΅ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈΠΌΠ΅ΡŽΡ‚ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½ΡƒΡŽ ΠΏΠ»ΠΎΡ‚Π½ΠΎΡΡ‚ΡŒ ΠΈ Π²Ρ‹Β¬ΡΠΎΠΊΡƒΡŽ ΠΈΠ·Π½ΠΎΡΠΎΡΡ‚ΠΎΠΉΠΊΠΎΡΡ‚ΡŒ. ВысокиС Π·Π°Ρ‰ΠΈΡ‚Π½Ρ‹Π΅ свойства ΠΎΡ‚ дСйствия элСктромагнитных ΠΏΠΎΠ»Π΅ΠΉ МЦК ΠΏΠΎΠ»ΡƒΡ‡Π°ΡŽΡ‚ ΠΏΡ€ΠΈ использовании ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… Π·Π°ΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»Π΅ΠΉ с высоким (35-70 %) содСрТаниСм ΠΆΠ΅Π»Π΅Π·Π°, срСди Π½ΠΈΡ… - Π±Π°Ρ€ΠΈΡ‚, ΠΈΠ»ΠΌΠ΅Π½ΠΈΡ‚, ΠΌΠ°Π³Π½Π΅Ρ‚ΠΈΡ‚ ΠΈ Π³Π΅ΠΌΠ°Ρ‚ΠΈΡ‚ [2]. Особо тяТСлыС МЦК с ΠΏΠ»ΠΎΡ‚Π½ΠΎΡΡ‚ΡŒΡŽ Π±ΠΎΠ»Π΅Π΅ 5,0 Ρ‚/ΠΌ' для Π·Π°Ρ‰ΠΈΡ‚Ρ‹ ΠΎΡ‚ Ρ€Π°Π΄ΠΈΠΎΒ¬Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… ΠΈ элСктромагнитных воздСйствий [3] содСрТат мСтал¬личСскиС шлаки с Ρ…Ρ€ΠΎΠΌΠΎΠΌ ΠΈ свинцом, Π° Ρ‚Π°ΠΊΠΆΠ΅ Ρ„Π΅Ρ€Ρ€ΠΎΡ…Ρ€ΠΎΠΌ, фСр¬росилиций, фСррофосфор ΠΈ боросодСрТащиС ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹. Π’ связи с высокой ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΡŽ производства ΠΈΠ·Π΄Π΅Π»ΠΈΠΉ ΠΈΠ· МЦК с ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½Ρ‹ΠΌΠΈ заполнитСлями всС больший интСрСс прСд¬ставляСт использованиС мСталличСских ΠΎΡ‚Ρ…ΠΎΠ΄ΠΎΠ². Π˜Ρ… Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΒ¬Π½ΠΎΠ΅ использованиС - Π²Π°ΠΆΠ½ΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ Π² Π·Π°Ρ‰ΠΈΡ‚Π΅ ΠΎΠΊΡ€ΡƒΠΆΠ°ΡŽΡ‰Π΅ΠΉ срСды. ИсслСдования Π² области Π½ΠΎΠ²Ρ‹Ρ… ΡΡ‚Ρ€ΠΎΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² с ТСлСзосодСрТащими ΠΎΡ‚Ρ…ΠΎΠ΄Π°ΠΌΠΈ, Π² частности, ΠΏΠ΅Ρ€Ρ„ΠΎΡ€ΠΈΡ€ΠΎΠ²Π°Π½Β¬Π½ΠΎΠΉ ΡΡ‚Π°Π»ΡŒΠ½ΠΎΠΉ Π»Π΅Π½Ρ‚Ρ‹, пистонов, ΠΏΡ‹Π»Π΅Π²ΠΈΠ΄Π½Ρ‹Ρ… ΠΎΡ‚Ρ…ΠΎΠ΄ΠΎΠ² ΠΎΡ‚ Ρ„ΠΈΠ»ΡŒΡ‚Ρ€ΠΎ- Π°Π³Ρ€Π΅Π³Π°Ρ‚ΠΎΠ² ΠΈ мСталличСских ΠΏΠΎΡ€ΠΎΡˆΠΊΠΎΠ² [4-7], ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ ΠΏΠ΅Ρ€ΡΠΏΠ΅ΠΊΒ¬Ρ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΈΡ… примСнСния Π² МЦК. Π’ качСствС ΡΠ²ΡΠ·ΡƒΡŽΡ‰Π΅Π³ΠΎ ΠΈΡΒ¬ΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ ΠΏΠΎΡ€Ρ‚Π»Π°Π½Π΄Ρ†Π΅ΠΌΠ΅Π½Ρ‚, ΠΏΡƒΡ†Ρ†ΠΎΠ»Π°Π½ΠΎΠ²Ρ‹ΠΉ, ΡˆΠ»Π°ΠΊΠΎΠ²Ρ‹ΠΉ ΠΈ алю- ΠΌΠΈΠ½Π°Ρ‚ΠΈΡ‹ΠΉ Ρ†Π΅ΠΌΠ΅Π½Ρ‚Ρ‹ [8]. ΠŸΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ Ρ„Π°ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ низкая Ρ†Π΅Π½Π°, Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ эффСктивной ΡƒΡ‚ΠΈΠ»ΠΈΠ·Π°Ρ†ΠΈΠΈ, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΈΠ·Π΄Π΅Π»ΠΈΠΉ с Π½ΠΎΠ²Ρ‹ΠΌΠΈ свойствами. Однако использованиС ΠΎΡ‚Ρ…ΠΎΠ΄ΠΎΠ² Π² рядС случаСв ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΡƒΡ…ΡƒΠ΄ΡˆΠ΅Π½ΠΈΡŽ качСства ΠΌΠ°Ρ‚Π΅Β¬Ρ€ΠΈΠ°Π»Π°. Π’ связи с этим Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ Ρ€Π°Π·Ρ€Π°Π±Π°Ρ‚Ρ‹Π²Π°Ρ‚ΡŒ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ составы МЦК ΠΈ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΡ… свойства Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ соврС¬мСнными ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ. ΠœΠ΅Ρ‚Π°Π»Π»ΠΎΡ†Π΅ΠΌΠ΅Π½Ρ‚Π½Ρ‹Π΅ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Ρ‹ с ΠΌΠ°Π»ΠΎΡ€Π°Π·ΠΌΠ΅Ρ€Π½Ρ‹ΠΌΠΈ ΠΌΠ΅Ρ‚Π°Π»-личСскими заполнитСлями (ΠœΠœΠ—) ΠΈΠΌΠ΅ΡŽΡ‚ Π²Ρ‹ΡΠΎΠΊΡƒΡŽ износостой-ΠΊΠΎΡΡ‚ΡŒ, Π²Ρ‹ΡΠΎΠΊΡƒΡŽ Ρ‚Π΅Ρ€ΠΌΠΎΡΡ‚ΠΎΠΉΠΊΠΎΡΡ‚ΡŒ ΠΈ Π½ΠΈΠ·ΠΊΡƒΡŽ усадку. Однако ΠΏΠΎΠ»-Π½ΠΎΡΡ‚ΡŒΡŽ ΠΈΡΠΊΠ»ΡŽΡ‡ΠΈΡ‚ΡŒ усадку ΠΈ растрСскиваниС Π½Π° Π³Ρ€Π°Π½ΠΈΡ†Π΅ Ρ†Π΅ΠΌΠ΅Π½Ρ‚Π° ΠΈ мСталличСского заполнитСля являСтся Ρ‚Ρ€ΡƒΠ΄Π½ΠΎΠΉ Π·Π°Π΄Π°Ρ‡Π΅ΠΉ [8]. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, с ΠœΠœΠ— слоТно Ρ€Π°Π±ΠΎΡ‚Π°Ρ‚ΡŒ ΠΈΠ·-Π·Π° трудностСй с ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Β¬ΡˆΠΈΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΈ ΡƒΠΊΠ»Π°Π΄ΠΊΠΎΠΉ, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΈΠ·-Π·Π° ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ расслоСния Π±Π΅Ρ‚ΠΎΠ½Β¬Π½ΠΎΠΉ смСси. Π Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ Π²ΠΈΠ΄Ρ‹ ΠœΠœΠ— описаны Π² Ρ€Π°Π±ΠΎΡ‚Π΅ [9]. РассмотрСны Ρ‚Π°ΠΊΠΆΠ΅ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ Π²ΠΈΠ΄Ρ‹ ΠœΠœΠ—, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ТСлСзо¬содСрТащих ΠΎΠΏΠΈΠ»ΠΎΠΊ, ΠΈ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ использования ΠΈΡ… Π² Π±Π΅Ρ‚ΠΎΠ½Β¬Π½Ρ‹Ρ… смСсях, частично замСняя ΠΈΠΌΠΈ пСсок [9-10]. ΠœΠœΠ— ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ эффСктивно ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΡ‚ΡŒ ΠΏΠ»ΠΎΡ‚Π½ΠΎΡΡ‚ΡŒ МЦК. Однако установлСно [7], Ρ‡Ρ‚ΠΎ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ ΠœΠœΠ— сниТаСт ΠΏΡ€ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° ΠΈ ΠΏΠΎΠΊΠ°Π·Π°Β¬Ρ‚Π΅Π»ΡŒ осадки конуса Π±Π΅Ρ‚ΠΎΠ½Π½ΠΎΠΉ смСси. ΠŸΡ€ΠΈ использовании ΠœΠœΠ— общая ΠΏΡ€ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π° ΠΌΠΎΠΆΠ΅Ρ‚ ΡΠ½ΠΈΠΆΠ°Ρ‚ΡŒΡΡ ΠΈΠ·-Π·Π° ΠΈΡ… ΠΏΠ»ΠΎΡ…ΠΎΒ¬Π³ΠΎ сцСплСния ΠΌΠ΅Ρ‚Π°Π»Π»Π° с Ρ†Π΅ΠΌΠ΅Π½Ρ‚ΠΎΠΌ. Для ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡ прочности ΠΏΡƒΡ‚Π΅ΠΌ ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½ΠΈΡ ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π½ΠΎΠΉ Π·ΠΎΠ½Ρ‹ (Π·Π°ΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒ - цСмСнтная ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π°) часто ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ Π΄ΠΎΠ±Π°Π²ΠΊΠΈ, Π² Ρ‚ΠΎΠΌ числС Π½Π°Π½ΠΎΡ€Π°Π·ΠΌΠ΅Ρ€Π½Ρ‹Π΅, Ρ‚Π°ΠΊΠΈΠ΅ ΠΊΠ°ΠΊ супСрпластификаторы, ΠΌΠΈΠΊΡ€ΠΎΠΊΡ€Π΅ΠΌΠ½Π΅Β¬Π·Π΅ΠΌ, ΠΌΠ΅Ρ‚Π°ΠΊΠ°ΠΎΠ»ΠΈΠ½, Π½Π°Π½ΠΎ-ΠΌΠΈΠΊΡ€ΠΎΠΊΡ€Π΅ΠΌΠ½Π΅Π·Π΅ΠΌ [6]. Π‘ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π½Π΅Ρ€Π°Π·Ρ€ΡƒΡˆΠ°ΡŽΡ‰ΠΈΡ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² контроля, Π² частности, ΡƒΠ»ΡŒΡ‚Ρ€Π°Π·Π²ΡƒΠΊΠΎΠ²ΠΎΠ³ΠΎ, Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΠΎΡ†Π΅Π½ΠΈΠ²Π°Ρ‚ΡŒ прочностныС свойства МЦК, Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ ΠΏΠΎΡ€ ΠΈ Π΄Π΅Ρ„Π΅ΠΊΡ‚ΠΎΠ², ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½ΠΎΡΡ‚ΡŒ состава ΠΈΠ·Π΄Π΅Π»ΠΈΠΉ ΠΏΠΎ ΠΎΠ±ΡŠΒ¬Π΅ΠΌΡƒ. Однако практичСски Π½Π΅Ρ‚ Ρ‚Π°ΠΊΠΈΡ… Π΄Π°Π½Π½Ρ‹Ρ… ΠΏΠΎ Π±Π΅Ρ‚ΠΎΠ½Π°ΠΌ с ΠœΠœΠ—. ЦСлью Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π±Ρ‹Π»ΠΎ ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ влияниС ΠœΠœΠ— ΠΈ Π΄ΠΎΠ±Π°-Π²ΠΎΠΊ Π½Π° ΠΏΡ€ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² МЦК, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ исполь-зования ΡƒΠ»ΡŒΡ‚Ρ€Π°Π·Π²ΡƒΠΊΠΎΠ²Ρ‹Ρ… ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ для ΠΈΡ… контроля Π½Π΅Ρ€Π°Π·Ρ€Ρƒ-ΡˆΠ°ΡŽΡ‰ΠΈΠΌ способом. Π˜Π·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΡ, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ оп¬тичСской микроскопии, ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ°Π»ΠΈ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ‹Π΅ особСнности повСрхностСй Ρ€Π°Π·Ρ€ΡƒΡˆΠ΅Π½ΠΈΡ ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² Ρ€Π°Π·Π½Ρ‹Ρ… составов ΠΈ особСн¬ности сцСплСнСния мСталличСского заполнитСля с Ρ†Π΅ΠΌΠ΅Π½Ρ‚Π½ΠΎΠΉ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π΅ΠΉ

    THE EFFECT OF A COMPLEX POZZOLANIC ADDITIVE CONSISTING OF MILLED GLASS AND METAKAOLIN ON THE DEGRADATION OF A CEMENTITIOUS COMPOSITE WITH GROUND WASTE GLASS CAUSED BY ALKALI-SILICA REACTION

    No full text
    This paper investigates the effect of partial replacement of cement by milled glass (MS), metakaolin (MK), and their mixture and partial replacement of sand by crushed glass (TS) on the physical and mechanical properties of a cementitious composite, as well as on the resistance of the composite to degradation caused by alkali-silica reaction (ASR). After 28 and 56 days of curing, the highest improvement in the mechanical properties was observed in the batches of specimens with the MS, MK and their mixture. The physical and mechanical properties of specimens with partially replaced sand to TS also deteriorated the least (the lowest expansion 0.02 %) with the application of the MS and MK mixture after 56 days of exposure to alkaline attack. XRD and microstructural analyses have shown that the reduction in expansion is due to the higher content of hydration products, as well as to the denser contact zone between the aggregate and the cementitious matrix

    Investigation of Hydration Features of the Special Concrete with Aggregates of Various Metal Particles

    No full text
    This study presents an analysis of various size metal particle waste (MP) influences on Portland cement (PC) paste hydration course, concrete sample structure densification during hardening and physical-mechanical properties. Investigations have shown that MP filler accelerates maximum heat release rate in PC pastes. MP intensifies structure development in the early phase, but slows it down in later PC hydration period. After 28-days of hardening the compressive strength of the concrete samples without MP filler is about 20% higher than of samples with MP. When in concrete composition microsilica and MP fillers are used together, compressive strength of concrete sample composition is up to 50% higher than of samples with MP filler only
    corecore