199 research outputs found

    The Traditional Herbal Medicine, Dangkwisoo-San, Prevents Cerebral Ischemic Injury through Nitric Oxide-Dependent Mechanisms

    Get PDF
    Dangkwisoo-San (DS) is an herbal extract that is widely used in traditional Korean medicine to treat traumatic ecchymosis and pain by promoting blood circulation and relieving blood stasis. However, the effect of DS in cerebrovascular disease has not been examined experimentally. The protective effects of DS on focal ischemic brain were investigated in a mouse model. DS stimulated nitric oxide (NO) production in human brain microvascular endothelial cells (HBMECs). DS (10ā€“300ā€‰Ī¼g/mL) produced a concentration-dependent relaxation in mouse aorta, which was significantly attenuated by the nitric oxide synthase (NOS) inhibitor L-NAME, suggesting that DS causes vasodilation via a NO-dependent mechanism. DS increased resting cerebral blood flow (CBF), although it caused mild hypotension. To investigate the effect of DS on the acute cerebral injury, C57/BL6J mice received 90ā€‰min of middle cerebral artery occlusion followed by 22.5ā€‰h of reperfusion. DS administered 3 days before arterial occlusion significantly reduced cerebral infarct size by 53.7% compared with vehicle treatment. However, DS did not reduce brain infarction in mice treated with the relatively specific endothelial NOS (eNOS) inhibitor, N5-(1-iminoethyl)-L-ornithine, suggesting that the neuroprotective effect of DS is primarily endothelium-dependent. This correlated with increased phosphorylation of eNOS in the brains of DS-treated mice. DS acutely improves CBF in eNOS-dependent vasodilation and reduces infarct size in focal cerebral ischemia. These data provide causal evidence that DS is cerebroprotective via the eNOS-dependent production of NO, which ameliorates blood circulation

    Gene Expression Profiles in Genetically Different Mice Infected with Toxoplasma gondii: ALDH1A2, BEX2, EGR2, CCL3 and PLAU

    Get PDF
    Toxoplasma gondii can modulate host cell gene expression; however, determining gene expression levels in intermediate hosts after T. gondii infection is not known much. We selected 5 genes (ALDH1A2, BEX2, CCL3, EGR2 and PLAU) and compared the mRNA expression levels in the spleen, liver, lung and small intestine of genetically different mice infected with T. gondii. ALDH1A2 mRNA expressions of both mouse strains were markedly increased at day 1-4 postinfection (PI) and then decreased, and its expressions in the spleen and lung were significantly higher in C57BL/6 mice than those of BALB/c mice. BEX2 and CCR3 mRNA expressions of both mouse strains were significantly increased from day 7 PI and peaked at day 15-30 PI (P<0.05), especially high in the spleen liver or small intestine of C57BL/6 mice. EGR2 and PLAU mRNA expressions of both mouse strains were significantly increased after infection, especially high in the spleen and liver. However, their expression patterns were varied depending on the tissue and mouse strain. Taken together, T. gondii-susceptible C57BL/6 mice expressed higher levels of these 5 genes than did T. gondii-resistant BALB/c mice, particularly in the spleen and liver. And ALDH1A2 and PLAU expressions were increased acutely, whereas BEX2, CCL3 and EGR2 expressions were increased lately. Thus, these demonstrate that host genetic factors exert a strong impact on the expression of these 5 genes and their expression patterns were varied depending on the gene or tissue

    Catecholamines May Play an Important Role in the Pathogenesis of Transient Mid- and Basal Ventricular Ballooning Syndrome

    Get PDF
    The exact pathogenesis of transient mid- and basal ventricular ballooning, a new variant of transient left ventricular (LV) ballooning, remains unknown. We report two cases of transient mid- and basal ventricular ballooning associated with catecholamines. These cases suggest that catecholamine-mediated myocardial dysfunction might be a potential mechanism of this syndrome

    Drug-Eluting Stenting Followed by Cilostazol Treatment Reduces Late Restenosis in Patients With Diabetes Mellitus The DECLARE-DIABETES Trial (A Randomized Comparison of Triple Antiplatelet Therapy With Dual Antiplatelet Therapy After Drug-Eluting Stent Implantation in Diabetic Patients)

    Get PDF
    ObjectivesWe sought to evaluate the impact of cilostazol on neointimal hyperplasia after drug-eluting stent (DES) implantation in patients with diabetes mellitus (DM).BackgroundAlthough cilostazol has reduced the extent of neointimal hyperplasia and restenosis in patients after bare-metal stent implantation, it is not known whether this effect occurs after DES implantation in diabetic patients.MethodsThis randomized, multicenter, prospective study compared triple antiplatelet therapy (aspirin, clopidogrel, and cilostazol, triple group, n = 200) and dual antiplatelet therapy (aspirin and clopidogrel, standard group, n = 200) for 6 months in patients with DM receiving DES. The primary end point was in-stent late loss at 6 months.ResultsThe 2 groups had similar baseline clinical and angiographic characteristics. The in-stent (0.25 Ā± 0.53 mm vs. 0.38 Ā± 0.54 mm, p = 0.025) and in-segment (0.42 Ā± 0.50 mm vs. 0.53 Ā± 0.49 mm, p = 0.031) late loss were significantly lower in the triple versus standard group, as were 6-month in-segment restenosis (8.0% vs. 15.6%, p = 0.033) and 9-month target lesion revascularization (TLR) (2.5% vs. 7.0%, p = 0.034). At 9 months, major adverse cardiac events, including death, myocardial infarction, and TLR, tended to be lower in the triple than in the standard group (3.0% vs. 7.0%, p = 0.066). Multivariate analysis showed that sirolimus-eluting stents and the use of cilostazol were strong predictors of reduced restenosis or TLR.ConclusionsTriple antiplatelet therapy after DES implantation decreased angiographic restenosis and extent of late loss, resulting in a reduced risk of 9-month TLR compared with dual antiplatelet therapy in diabetic patients

    P-glycoprotein confers acquired resistance to 17-DMAG in lung cancers with an ALK rearrangement

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.Background Because anaplastic lymphoma kinase (ALK) is dependent on Hsp90 for protein stability, Hsp90 inhibitors are effective in controlling growth of lung cancer cells with ALK rearrangement. We investigated the mechanism of acquired resistance to 17-(Dimethylaminoethylamino)-17-demethoxygeldanamycin (17-DMAG), a geldanamycin analogue Hsp90 inhibitor, in H3122 and H2228 non-small cell lung cancer cell lines with ALK rearrangement. Methods Resistant cell lines (H3122/DR-1, H3122/DR-2 and H2228/DR) were established by repeated exposure to increasing concentrations of 17-DMAG. Mechanisms for resistance by either NAD(P)H/quinone oxidoreductase 1 (NQO1), previously known as a factor related to 17-DMAG resistance, or P-glycoprotein (P-gp; ABCB1/MDR1) were queried using RT-PCR, western blot analysis, chemical inhibitors, the MTT cell proliferation/survival assay, and cellular efflux of rhodamine 123. Results The resistant cells showed no cross-resistance to AUY922 or ALK inhibitors, suggesting that ALK dependency persists in cells with acquired resistance to 17-DMAG. Although expression of NQO1 was decreased in H3122/DR-1 and H3122/DR-2, NQO1 inhibition by dicumarol did not affect the response of parental cells (H2228 and H3122) to 17-DMAG. Interestingly, all resistant cells showed the induction of P-gp at the protein and RNA levels, which was associated with an increased efflux of the P-gp substrate rhodamine 123 (Rho123). Transfection with siRNA directed against P-gp or treatment with verapamil, an inhibitor of P-gp, restored the sensitivity to the drug in all cells with acquired resistance to 17-DMAG. Furthermore, we also observed that the growth-inhibitory effect of 17-DMAG was decreased in A549/PR and H460/PR cells generated to over-express P-gp by long-term exposure to paclitaxel, and these cells recovered their sensitivity to 17-DMAG through the inhibition of P-gp. Conclusion P-gp over-expression is a possible mechanism of acquired resistance to 17-DMAG in cells with ALK rearrangement

    Visualizing Orbital Content of Electronic Bands in Anisotropic 2D Semiconducting ReSe2

    Get PDF
    Many properties of layered materials change as they are thinned from their bulk forms down to single layers, with examples including indirect-to-direct band gap transition in 2H semiconducting transition metal dichalcogenides as well as thickness-dependent changes in the valence band structure in post-transition metal monochalcogenides and black phosphorus. Here, we use angle-resolved photoemission spectroscopy to study the electronic band structure of monolayer ReSe2_{2}, a semiconductor with a distorted 1T structure and in-plane anisotropy. By changing the polarization of incoming photons, we demonstrate that for ReSe2_{2}, in contrast to the 2H materials, the out-of-plane transition metal dz2d_{z^{2}} and chalcogen pzp_{z} orbitals do not contribute significantly to the top of the valence band which explains the reported weak changes in the electronic structure of this compound as a function of layer number. We estimate a band gap of 1.7 eV in pristine ReSe2_{2} using scanning tunneling spectroscopy and explore the implications on the gap following surface-doping with potassium. A lower bound of 1.4 eV is estimated for the gap in the fully doped case, suggesting that doping-dependent many-body effects significantly affect the electronic properties of ReSe2_{2}. Our results, supported by density functional theory calculations, provide insight into the mechanisms behind polarization-dependent optical properties of rhenium dichalcogenides and highlight their place amongst two-dimensional crystals.Comment: 37 pages (including Supporting Information), 7 figures in the main tex
    • ā€¦
    corecore