7 research outputs found

    Évolution intra-hîte de Vibrio cholerae et interactions avec le microbiome intestinal

    Full text link
    Le cholĂ©ra est une infection diarrhĂ©ique aiguĂ« qui reprĂ©sente encore aujourd’hui un grave problĂšme de santĂ© publique dans les pays oĂč l’accĂšs Ă  l’eau potable et un systĂšme d’assainissement adĂ©quat ne peut pas ĂȘtre garanti. Vibrio cholerae, le pathogĂšne bactĂ©rien responsable de cette maladie, peut provoquer toute une sĂ©rie de symptĂŽmes chez les individus infectĂ©s, allant d’une diarrhĂ©e intense conduisant Ă  une dĂ©shydratation sĂ©vĂšre, au portage asymptomatique de la bactĂ©rie. Bien que notre comprĂ©hension du cholĂ©ra Ă  une Ă©chelle macro-Ă©pidĂ©miologique a considĂ©rablement Ă©tĂ© amĂ©liorĂ©e par le dĂ©veloppement des techniques de sĂ©quençage Ă  haut dĂ©bit et par les avancĂ©es dans le domaine de la gĂ©nomique bactĂ©rienne, aucune Ă©tude n’a encore Ă©tĂ© menĂ©e pour caractĂ©riser son Ă©volution Ă  l’échelle des individus infectĂ©s. De plus, le rĂŽle des porteurs asymptomatiques au sein d’une Ă©pidĂ©mie et la raison derriĂšre l’absence de symptĂŽmes chez ces individus infectĂ©s sont encore mĂ©connus. L’objectif principal de cette thĂšse est donc de (1) caractĂ©riser la diversitĂ© gĂ©nomique de V. cholerae au niveau des individus et des cercles familiaux, mais aussi (2) d’évaluer le rĂŽle potentiel du microbiome intestinal dans la susceptibilitĂ© de contracter cette maladie entĂ©rique aiguĂ« et de prĂ©senter des symptĂŽmes sĂ©vĂšres. Dans un premier temps, nous caractĂ©risons la diversitĂ© gĂ©nomique de colonies isolĂ©es Ă  partir de patients symptomatiques. Le sĂ©quençage de gĂ©nomes entiers de souches provenant de patients du Bangladesh et d’HaĂŻti rĂ©vĂšle que cette diversitĂ© sous la forme de mutations ponctuelles reste limitĂ©e, mais dĂ©tectable au sein des hĂŽtes. Une grande partie de la variation du contenu gĂ©nĂ©tique semble ĂȘtre surtout due au gain et Ă  la perte de phages et de plasmides au sein de la population de V. cholerae, avec des Ă©changes occasionnels entre le pathogĂšne et d’autres membres commensaux du microbiote intestinal. Cela contredit l’hypothĂšse couramment acceptĂ©e que les infections par V. cholerae sont majoritairement clonales, et confirme que le transfert horizontal de gĂšnes est un facteur important dans l’évolution de V. cholerae. De plus, nos rĂ©sultats montrent que certains de ces variants peuvent avoir un effet phĂ©notypique, impactant par exemple la formation de biofilms, et peuvent ĂȘtre sĂ©lectionnĂ©s au sein des individus infectĂ©s. Par la suite, nous appliquons une association de mĂ©thodes de sĂ©quençage de gĂ©nomes entiers et de mĂ©thodes mĂ©tagĂ©nomiques afin d’amĂ©liorer la dĂ©tection des variants intra-hĂŽte, Ă  la fois chez des patients symptomatiques, mais aussi chez des porteurs asymptomatiques. Notre Ă©tude montre que l’approche mĂ©tagĂ©nomique offre une meilleure rĂ©solution dans la dĂ©tection de la diversitĂ© dans la population microbienne, mais reste difficile Ă  appliquer chez des patients asymptomatiques, en raison du faible nombre de cellules de V. cholerae chez ces patients. Dans l’ensemble, nous constatons que le niveau de diversitĂ© au sein de la population bactĂ©rienne intra-hĂŽte est similaire entre les patients symptomatiques et asymptomatiques. Nous dĂ©tectons aussi la prĂ©sence de souches hypermutantes chez certains patients. De plus, alors que les mutations chez les patients porteurs de phĂ©notypes d’hypermutations ne semblent pas sous l’effet de la sĂ©lection, des signes d'Ă©volution parallĂšle sont dĂ©tectĂ©s chez les patients prĂ©sentant un plus faible nombre de mutations, suggĂ©rant des mĂ©canismes d’adaptation au sein de l’hĂŽte. Nos rĂ©sultats soulignent la puissance de la mĂ©tagĂ©nomique combinĂ©e au sĂ©quençage de gĂ©nomes entiers pour caractĂ©riser la diversitĂ© intra-hĂŽte dans le cas d’une infection aiguĂ« du cholĂ©ra, mais aussi dans le cas de portage asymptomatique, tout en identifiant pour la premiĂšre fois le phĂ©notype d’hypermutation chez des patients infectĂ©s. Finalement, nous nous intĂ©ressons aux facteurs liĂ©s Ă  la susceptibilitĂ© Ă  la maladie et Ă  la sĂ©vĂ©ritĂ© des symptĂŽmes. BasĂ©e sur une Ă©tude rĂ©cente utilisant le sĂ©quençage 16S pour montrer le lien potentiel entre le microbiome intestinal et la susceptibilitĂ© Ă  l’infection par V. cholerae, nos analyses utilisent les mĂ©thodes de sĂ©quençage mĂ©tagĂ©nomique sur les mĂȘmes Ă©chantillons de cette prĂ©cĂ©dente Ă©tude afin de caractĂ©riser les profils taxonomiques et fonctionnels du microbiome intestinal de contacts familiaux exposĂ©s Ă  V. cholerae. Les Ă©chantillons sont prĂ©levĂ©s avant l’infection de ces contacts familiaux et l’apparition ou non de symptĂŽmes, et sont analysĂ©s pour identifier des prĂ©dicteurs Ă  la maladie symptomatique. GrĂące Ă  un algorithme d’apprentissage machine, nous pouvons identifier des espĂšces, des familles de gĂšnes et des voies mĂ©taboliques du microbiome au moment de l'exposition Ă  V. cholerae pour dĂ©tecter des biomarqueurs potentiels corrĂ©lĂ©s avec les risques d'infection et la gravitĂ© des symptĂŽmes. Nos rĂ©sultats montrent que l’utilisation du sĂ©quençage mĂ©tagĂ©nomique amĂ©liore la prĂ©cision et l’exactitude des prĂ©visions par rapport au sĂ©quençage 16S. Nos analyses permettent aussi de prĂ©dire la gravitĂ© de la maladie, bien qu’avec une plus grande incertitude que la prĂ©diction de l’infection. Des taxons bactĂ©riens des genres Prevotella et Bifidobacterium ont Ă©tĂ© identifiĂ©es comme des marqueurs potentiels de protection contre l’infection, tout comme gĂšnes impliquĂ©s dans le mĂ©tabolisme du fer. Nos rĂ©sultats soulignent le pouvoir de la mĂ©tagĂ©nomique pour prĂ©dire l’évolution des maladies et identifient des espĂšces et des gĂšnes spĂ©cifiques pouvant ĂȘtre impliquĂ©s dans des tests expĂ©rimentaux afin d’étudier les mĂ©canismes liĂ©s au microbiome intestinal expliquant la potentielle protection contre le cholĂ©ra.Cholera is an acute diarrhoeal disease that remains a global threat to public health in countries where access to safe water and adequate sanitation cannot be guaranteed. Vibrio cholerae, the bacterial pathogen responsible for this disease, can cause a range of symptoms in infected individuals, from intense diarrhea leading to severe dehydration, to asymptomatic carriage of the bacteria. Although our understanding of cholera on a macro-epidemiological scale has been considerably improved by the development of high-throughput sequencing techniques and by advances in bacterial genomics, no studies have yet been conducted to characterize its evolution at the scale of infected individuals. Furthermore, the role of asymptomatic carriers in an epidemic and the reason behind the absence of symptoms in these infected individuals remains unknown. The main objective of this thesis is therefore to characterize the genomic diversity of V. cholerae at the level of individuals and households, but also to evaluate the potential role of the gut microbiome in the susceptibility to contract this acute enteric disease and to present severe symptoms. First, we characterize the genomic diversity of colonies isolated from symptomatic patients. The whole genome sequencing of strains from patients in Bangladesh and Haiti reveals that this diversity is detectable in the form of point mutations within hosts, but remains limited. Much of the variation detected within patients appears to be due to the gain and loss of phages and plasmids within the V. cholerae population, with occasional exchanges between the pathogen and other commensal members of the gut microbiota. These results challenge the commonly accepted assumption that V. cholerae infections are predominantly clonal, and confirm that horizontal gene transfer is an important factor in the evolution of V. cholerae. In addition, our results show that some of these variants may also have a phenotypic effect, for example by impacting biofilm formation, and can be selected within infected individuals. Next, we apply a combination of whole genome sequencing and metagenomic approaches to improve the detection of intra-host variants, both in symptomatic patients and in asymptomatic carriers. Our study shows that the metagenomic approach offers a better resolution in the detection of the diversity in the microbial population, but remains difficult to apply in asymptomatic patients, due to the low number of V. cholerae cells in these individuals. Overall, we find that the level of diversity within the intra-host bacterial population is similar between symptomatic and asymptomatic patients. We also detect the presence of hypermutator strains in some patients. In addition, while mutations in patients with hypermutator phenotypes did not appear to be driven by selection, signs of parallel evolution are detected in patients with fewer mutations, suggesting adaptive mechanisms within the host. Our results underline the power of metagenomics combined with whole genome sequencing to characterize intra-host diversity in acute cholera infection, but also in asymptomatic carriers, while identifying for the first time an hypermutator phenotype in infected patients. Finally, we are interested in factors related to susceptibility to the disease and related to the severity of symptoms. Based on a recent study using 16S rRNA amplicon sequencing to show the potential link between the intestinal microbiome and susceptibility to V. cholerae infection, our study uses metagenomic sequencing methods on the same samples from this previous study to characterize the taxonomic and functional profiles of the gut microbiome of household contacts exposed to V. cholerae. Samples are collected prior to infection of these household contacts, and used to identify predictors of symptomatic disease. Using a machine learning algorithm, we can identify species, gene families and metabolic pathways in the microbiome at the time of exposure to V. cholerae to detect potential biomarkers correlated with risk of infection and symptom severity. Our results show that the use of metagenomic sequencing improves the precision and accuracy of predictions compared to 16S rRNA amplicon sequencing. Our analyses also predict disease severity, although with greater uncertainty than the prediction of infection. Bacterial taxa from the genera Prevotella and Bifidobacterium have been identified as potential markers of protection against infection, as well as genes involved in iron metabolism. Our results highlight the power of metagenomics to predict disease progression and identify specific species and genes that could be involved in experimental tests to study the mechanisms related to the microbiome explaining potential protection against cholera

    Origins Of Pandemic Vibrio Cholerae From Environmental Gene Pools

    No full text
    Some microorganisms can transition from an environmental lifestyle to a pathogenic one1-3. This ecological switch typically occurs through the acquisition of horizontally acquired virulence genes4,5. However, the genomic features that must be present in a population before the acquisition of virulence genes and emergence of pathogenic clones remain unknown. We hypothesized that virulence adaptive polymorphisms (VAPs) circulate in environmental populations and are required for this transition. We developed a comparative genomic framework for identifying VAPs, using Vibrio cholerae as a model. We then characterized several environmental VAP alleles to show that while some of them reduced the ability of clinical strains to colonize a mammalian host, other alleles conferred efficient host colonization. These results show that VAPs are present in environmental bacterial populations before the emergence of virulent clones. We propose a scenario in which VAPs circulate in the environment and become selected and enriched under certain ecological conditions, and finally a genomic background containing several VAPs acquires virulence factors that allow for its emergence as a pathogenic clone

    A Recent SARS-CoV-2 Infection Enhances Antibody-Dependent Cellular Cytotoxicity against Several Omicron Subvariants following a Fourth mRNA Vaccine Dose

    No full text
    Since the beginning of the SARS-CoV-2 pandemic, several variants of concern (VOCs), such as the Alpha, Beta, Gamma, Delta and Omicron variants, have arisen and spread worldwide. Today, the predominant circulating subvariants are sublineages of the Omicron variant, which have more than 30 mutations in their Spike glycoprotein compared to the ancestral strain. The Omicron subvariants were significantly less recognized and neutralized by antibodies from vaccinated individuals. This resulted in a surge in the number of infections, and booster shots were recommended to improve responses against these variants. While most studies mainly measured the neutralizing activity against variants, we and others previously reported that Fc-effector functions, including antibody-dependent cellular cytotoxicity (ADCC), play an important role in humoral responses against SARS-CoV-2. In this study, we analyzed Spike recognition and ADCC activity against several Omicron subvariants by generating cell lines expressing different Omicron subvariant Spikes. We tested these responses in a cohort of donors, who were recently infected or not, before and after a fourth dose of mRNA vaccine. We showed that ADCC activity is less affected than neutralization by the antigenic shift of the tested Omicron subvariant Spikes. Moreover, we found that individuals with a history of recent infection have higher antibody binding and ADCC activity against all Omicron subvariants than people who were not recently infected. With an increase in the number of reinfections, this study helps better understand Fc-effector responses in the context of hybrid immunity

    Temperature Influences the Interaction between SARS-CoV-2 Spike from Omicron Subvariants and Human ACE2

    No full text
    SARS-CoV-2 continues to infect millions of people worldwide. The subvariants arising from the variant-of-concern (VOC) Omicron include BA.1, BA.1.1, BA.2, BA.2.12.1, BA.4, and BA.5. All possess multiple mutations in their Spike glycoprotein, notably in its immunogenic receptor-binding domain (RBD), and present enhanced viral transmission. The highly mutated Spike glycoproteins from these subvariants present different degrees of resistance to recognition and cross-neutralisation by plasma from previously infected and/or vaccinated individuals. We have recently shown that the temperature affects the interaction between the Spike and its receptor, the angiotensin converting enzyme 2 (ACE2). The affinity of RBD for ACE2 is significantly increased at lower temperatures. However, whether this is also observed with the Spike of Omicron and sub-lineages is not known. Here we show that, similar to other variants, Spikes from Omicron sub-lineages bind better the ACE2 receptor at lower temperatures. Whether this translates into enhanced transmission during the fall and winter seasons remains to be determined

    Humoral Responses against BQ.1.1 Elicited after Breakthrough Infection and SARS-CoV-2 mRNA Vaccination

    No full text
    The Omicron BQ.1.1 variant is now the major SARS-CoV-2 circulating strain in many countries. Because of the many mutations present in its Spike glycoprotein, this variant is resistant to humoral responses elicited by monovalent mRNA vaccines. With the goal to improve immune responses against Omicron subvariants, bivalent mRNA vaccines have recently been approved in several countries. In this study, we measure the capacity of plasma from vaccinated individuals, before and after a fourth dose of mono- or bivalent mRNA vaccine, to recognize and neutralize the ancestral (D614G) and the BQ.1.1 Spikes. Before and after the fourth dose, we observe a significantly better recognition and neutralization of the ancestral Spike. We also observe that fourth-dose vaccinated individuals who have been recently infected better recognize and neutralize the BQ.1.1 Spike, independently of the mRNA vaccine used, than donors who have never been infected or have an older infection. Our study supports that hybrid immunity, generated by vaccination and a recent infection, induces higher humoral responses than vaccination alone, independently of the mRNA vaccine used

    Humoral Responses Elicited after a Fifth Dose of SARS-CoV-2 mRNA Bivalent Vaccine

    No full text
    While an important part of the world’s population is vaccinated against SARS-CoV-2, new variants continue to emerge. We observe that even after a fifth dose of the mRNA bivalent vaccine, most vaccinated individuals have antibodies that poorly neutralize several Omicron subvariants, including BQ.1.1, XBB, XBB.1.5, FD.1.1, and CH.1.1. However, Fc-effector functions remain strong and stable over time against new variants, which may partially explain why vaccines continue to be effective. We also observe that donors who have been recently infected have stronger antibody functional activities, including neutralization and Fc-effector functions, supporting the observations that hybrid immunity leads to better humoral responses
    corecore