1,810 research outputs found

    Performance of a seismicity model based on three parameters for earthquakes (M ≥ 5.0) in Kanto, central Japan

    Get PDF
    We constructed a model of earthquakes (M ≥ 5.0) in Kanto, central Japan, based on three parameters: the a and b values of the Gutenberg-Richter relation, and the ν- parameter of changes in mean event size. In our method, two empirical probability densities for each parameter, those associated with target events (conditional density distributions) and those not associated with them (background density distributions), are defined and assumed to have a normal distribution. Therefore, three parameters are transformed by appropriate relations so that new parameters are normally distributed. The retrospective analysis in the learning period and the prospective test of testing period demonstrated that the proposed model performs better by about 0.1 units in terms of the information gain per event than the value summed up with those of the three parameters. The results are confirmed by a simulation with randomly selected model parameters

    Configuration of separability and tests for multipartite entanglement in Bell-type experiments

    Get PDF
    We derive tight quadratic inequalities for all kinds of hybrid separable-inseparable nn-particle density operators on an arbitrary dimensional space. This methodology enables us to truly derive a tight quadratic inequality as tests for full nn-partite entanglement in various Bell-type correlation experiments on the systems that may not be identified as a collection of qubits, e.g., those involving photons measured by incomplete detectors. It is also proved that when the two measured observables are assumed to precisely anti-commute, a stronger quadratic inequality can be used as a witness of full nn-partite entanglement.Comment: To appear in Phys. Rev. Lett. (submitted on Jul. 4, 2002

    Fidelity criterion for quantum-domain transmission and storage of coherent states beyond unit-gain constraint

    Get PDF
    We generalize the experimental success criterion for quantum teleportation/memory in continuous-variable quantum systems to be suitable for non-unit-gain condition by considering attenuation/amplification of the coherent-state amplitude. The new criterion can be used for a non-ideal quantum memory and long distance quantum communication as well as quantum devices with amplification process. It is also shown that the framework to measure the average fidelity is capable of detecting all Gaussian channels in quantum domain.Comment: 4pages, No figures, Accepted for publication in PR

    Faithful qubit distribution assisted by one additional qubit against collective noise

    Full text link
    We propose a distribution scheme of polarization states of a single photon over collective-noise channel. By adding one extra photon with a fixed polarization, we can protect the state against collective noise via a parity-check measurement and post-selection. While the scheme succeeds only probabilistically, it is simpler and more flexible than the schemes utilizing decoherence-free subspace. An application to BB84 protocol through collective noise channel, which is robust to the Trojan horse attack, is also given.Comment: 4 pages, 3 figures; published version in Phys. Rev. Let

    Unconditionally Secure Key Distribution Based on Two Nonorthogonal States

    Full text link
    We prove the unconditional security of the Bennett 1992 protocol, by using a reduction to an entanglement distillation protocol initiated by a local filtering process. The bit errors and the phase errors are correlated after the filtering, and we can bound the amount of phase errors from the observed bit errors by an estimation method involving nonorthogonal measurements. The angle between the two states shows a trade-off between accuracy of the estimation and robustness to noises.Comment: 5 pages, 1 figur

    Selective entanglement breaking

    Get PDF
    We discuss the cases where local decoherence selectively degrades one type of entanglement more than other types. A typical case is called state ordering change, in which two input states with different amounts of entanglement undergoes a local decoherence and the state with the larger entanglement results in an output state with less entanglement than the other output state. We are also interested in a special case where the state with the larger entanglement evolves to a separable state while the other output state is still entangled, which we call selective entanglement breaking. For three-level or larger systems, it is easy to find examples of the state ordering change and the selective entanglement breaking, but for two-level systems it is not trivial whether such situations exist. We present a new strategy to construct examples of two-qubit states exhibiting the selective entanglement breaking regardless of entanglement measure. We also give a more striking example of the selective entanglement breaking in which the less entangled input state has only an infinitesimal amount of entanglement.Comment: 6 pages, 2 figure

    Boosting up quantum key distribution by learning statistics of practical single photon sources

    Full text link
    We propose a simple quantum-key-distribution (QKD) scheme for practical single photon sources (SPSs), which works even with a moderate suppression of the second-order correlation g(2)g^{(2)} of the source. The scheme utilizes a passive preparation of a decoy state by monitoring a fraction of the signal via an additional beam splitter and a detector at the sender's side to monitor photon number splitting attacks. We show that the achievable distance increases with the precision with which the sub-Poissonian tendency is confirmed in higher photon number distribution of the source, rather than with actual suppression of the multi-photon emission events. We present an example of the secure key generation rate in the case of a poor SPS with g(2)=0.19g^{(2)} = 0.19, in which no secure key is produced with the conventional QKD scheme, and show that learning the photon-number distribution up to several numbers is sufficient for achieving almost the same achievable distance as that of an ideal SPS.Comment: 11 pages, 3 figures; published version in New J. Phy
    • …
    corecore