18 research outputs found

    Lipidomic analysis reveals a radiosensitizing role of gamma-linolenic acid in glioma cells

    Get PDF
    Previous studies have demonstrated that gamma-linolenic acid (GLA) is effective against glioma cells under both in vitro and in vivo conditions. In the present study we determined how GLA alone or in combination with irradiation alters the fatty acid (FA) and lipid profiles, the lipid droplet (LD) content, the lipid biosynthetic gene expression and the apoptosis of glioma cells. In GLA-treated cells direct correlations were found between the levels of various FAs and the expression of the corresponding FA biosynthetic genes. The total levels of saturated and monosaturated FAs decreased in concert with the down-regulation of FASN and SCD1 gene expression. Similarly, decreased FADS1 gene expression was paralleled by lowered arachidonic acid (20:4 n-6) and eicosapentaenoic acid (20:5 n-3) contents, while the down-regulation of FADS2 expression was accompanied by a diminished docosahexaenoic acid (22:6 n-3) content. Detailed mass spectrometric analyses revealed that individual treatments gave rise to distinct lipidomic fingerprints. Following uptake, GLA was subjected to elongation, resulting in dihomo-gamma-linolenic acid (20:3 n-6, DGLA), which was used for the synthesis of the LD constituent triacylglycerols and cholesteryl esters. Accordingly, an increased number of LDs were observed in response to GLA administration after irradiation. GLA increased the radioresponsiveness of U87 MG cells, as demonstrated by an increase in the number of apoptotic cells determined by FACS analysis. In conclusion, treatment with GLA increased the apoptosis of irradiated glioma cells, and GLA might therefore increase the therapeutic efficacy of irradiation in the treatment of gliomas

    Combination of unsaturated fatty acids and ionizing radiation on human glioma cells: cellular, biochemical and gene expression analysis

    Get PDF
    Background: Based on previous observations a potential resort in the therapy of the particularly radioresistant glioma would be its treatment with unsaturated fatty acids (UFAs) combined with irradiation. Methods: We evaluated the effect of different UFAs (arachidonic acid (AA), docosahexaenoic acid (DHA), gamma-linolenic acid (GLA), eicosapentaenoic acid (EPA) and oleic acid (OA)) on human U87 MG glioma cell line by classical biochemical end-point assays, impedance-based, real-time cellular and holographic microscopic analysis. We further analyzed AA, DHA, and GLA at morphological, gene and miRNA expression level. Results: Corresponding to LDH-, MTS assays and real-time cytoxicity profiles AA, DHA, and GLA enhanced the radio sensitivity of glioma cells. The collective application of polyunsaturated fatty acids (PUFAs) and irradiation significantly changed the expression of EGR1, TNF alpha, NOTCH1, c MYC, TP53, HMOX1, AKR1C1, NQO1, while up-regulation of GADD45A, EGR1, GRP78, DDIT3, c-MYC, FOSL1 were recorded both in response to PUFA treatment or irradiation alone. Among the analyzed miRNAs miR-146 and miR-181a were induced by DHA treatment. Overexpression of miR-146 was also detected by combined treatment of GLA and irradiation. Conclusions: Because PUFAs increased the radio responsiveness of glioma cells as assessed by biochemical and cellular assays, they might increase the therapeutic efficacy of radiation in treatment of gliomas. We demonstrated that treatment with DHA, AA and GLA as adjunct to irradiation up-regulated the expression of oxidative-stress and endoplasmic reticulum stress related genes, and affected NOTCH1 expression, which could explain their additive effects

    Development of a small-animal focal brain irradiation model to study radiation injury and radiation-injury modifiers

    Get PDF
    Abstract Purpose: Our aim was to establish an effective small-animal focal brain radiation model for research on brain injuries. Material and methods: Groups of up to six rats were exposed to a range of doses from 120-40 Gy, at 10 intervals of a 6 MeV electron beam. Open-field motor functions and water maze learning-memory tests were performed after the irradiation at two-week intervals. Morphological changes were detected through repeated magnetic resonance imaging (MRI) monthly and were compared with the histopathological findings to determine if they predicted late microscopic changes. Results: The development of necrosis proved to be dose-dependent. 120 Gy resulted in serious deterioration within 4 weeks in all rats. Localized necrosis in one hemisphere was detected 2 months after the irradiation with >/= 70 Gy, and 3 months after 40-60 Gy consistent for all animals. The Morris water maze (MWM) tests proved to be the most sensitive tool for the early detection of a brain functional impairment. MRI screening provided useful information on the development of radiation necrosis, which defined the time point for histological examinations. Conclusions: The described method permits accurate dose delivery to a definite part in one hemisphere of the brain for six rats at a time. Following complex examinations, a dose of 40 Gy and a follow-up time of 4 months are proposed for investigations on neuroradiation modifiers

    Novel Anti-CRR9/CLPTM1L Antibodies with Antitumorigenic Activity Inhibit Cell Surface Accumulation, PI3K Interaction, and Survival Signaling.

    No full text
    We and others have recently shown Cisplatin Resistance-Related Protein 9 (CRR9)/Cleft Lip and Palate Transmembrane 1-Like (CLPTM1L) to affect survival and proliferation in lung and pancreatic tumor cells. Our research has indicated that CLPTM1L affects multiple survival signaling pathways in tumor cells under oncogenic, genotoxic, and microenvironmental stress. We have confirmed the association of CLPTM1L with pancreatic cancer by demonstrating overexpression of CLPTM1L in pancreatic tumors and poor survival in patients with high tumor expression of CLPTM1L. Predicting a transmembrane structure, we determined that CLPTM1L could be targeted at the plasma membrane. Herein, we describe the development of monoclonal antibodies targeting CLPTM1L. Lead antibodies inhibited surface accumulation of CLPTM1L, Akt phosphorylation, anchorage-independent growth, and chemotherapeutic resistance in lung and pancreatic tumor cells. Gemcitabine promoted a physical interaction between CLPTM1L and p110alpha in pancreatic tumor cells, which was inhibited by anti-CLPTM1L. In-vivo treatment with anti-CLPTM1L robustly inhibited the growth of both lung and pancreatic adenocarcinoma xenografts. The efficacy of anti-CLPTM1L correlated with specific epitopes representing important targets in human cancers, particularly those driven by KRas, for which effective targeted therapies have been elusive. This study is the first to report cell-surface exposure of the tumor survival protein CLPTM1L and inhibition of the function of surface CLPTM1L with novel, systematically developed inhibitory monoclonal antibodies establishing proof of concept of clinically practical agents inhibiting this compelling new tumor survival target in cancer

    Novel realtime cell analysis platform for the dynamic monitoring of ionizing radiation effects on human tumor cell lines and primary fibroblasts

    Get PDF
    Translational research in radiation oncology is important for the detection of adverse radiation effects, cellular responses, and radiation modifications, and may help to improve the outcome of radiation therapy in patients with cancer. The present study aimed to optimize and validate a realtime labelfree assay for the dynamic monitoring of cellular responses to ionizing radiation. The xCELLigence system is an impedancebased platform that provides continuous information on alterations in cell size, shape, adhesion, proliferation, and survival. In the present study, various malignant human primary fibroblast cells (U251, GBM2, MCF7, A549, HT29) were exposed to 0, 5 and 10 Gy of Cobalt60 radiation. As well as the xCELLigence system, cell survival and proliferation was evaluated using the following conventional endpoint cellbased methods: Clonogenic, MTS, and lactate dehydrogenase assays, and apoptosis was detected by fluorescenceactivated cell sorting. The effects of ionizing radiation were detected for each cell line using impedance monitoring. The realtime data correlated with the colony forming assay results. At low cell densities (1,0002,000 cells/well) the impedancebased method was more accurate at monitoring dosedependent changes in the malignant human primary fibroblast cell lines, as compared with the endpoint assays. The results of the present study demonstrated that the xCELLigence system may be a reliable and rapid diagnostic method for the monitoring of dynamic cell behavior following radiation. In addition, the xCELLigence system may be used to investigate the cellular mechanisms underlying the radiation response, as well as the timedependent effects of radiation on cell proliferation and viability

    Peripheral inflammatory activation after hippocampus irradiation in the rat

    Get PDF
    Abstract Purpose: Our goals were to detect the possible biochemical signs of inflammatory activation in the peripheral circulation in a rodent model of hippocampus irradiation, and to examine the effects of L-alpha-glycerylphosphorylcholine (GPC) in this experimental protocol. Materials and methods: Anesthetized Sprague-Dawley rats were subjected to 40 Gy cobalt irradiation of both hemispheres of the hippocampus, with or without GPC treatment (50 mg/kg intravenously (i.v.), 5 min before the irradiation, n=6, each). A third group (n=6) served as saline-treated control. Blood samples were obtained 3 h after the end of irradiation in order to examine the changes in plasma histamine, tumor necrosis factor-alpha (TNF-alpha), interleukin 1-beta, interleukin 6 (IL-6) and interleukin 10 (IL-10); liver tissue samples were taken to determine adenosine triphosphate (ATP) concentrations. Results: The hepatic ATP levels were significantly declined, while plasma concentrations of circulating TNF-alpha, IL-6, IL-10 and histamine were significantly increased after hippocampus irradiation. GPC treatment significantly reduced the irradiation-induced release of cytokines and histamine, and the liver ATP level was maintained at the control value. Conclusions: Targeted brain irradiation produced measurable pro- and anti-inflammatory cytokine changes in the systemic circulation. GPC supplementation provides significant protection against irradiation-induced peripheral pro-inflammatory activation and ATP depletion
    corecore