584 research outputs found

    A Photometrically and Morphologically Variable Infrared Nebula in L483

    Full text link
    We present narrow and broad K-band observations of the Class 0/I source IRAS 18148-0440 that span 17 years. The infrared nebula associated with this protostar in the L483 dark cloud is both morphologically and photometrically variable on a time scale of only a few months. This nebula appears to be an infrared analogue to other well-known optically visible variable nebulae associated with young stars, such as Hubble's Variable Nebula. Along with Cepheus A, this is one of the first large variable nebulae to be found that is only visible in the infrared. The variability of this nebula is most likely due to changing illumination of the cloud rather than any motion of the structure in the nebula. Both morphological and photometric changes are observed on a time scale only a few times longer than the light crossing time of the nebula, suggesting very rapid intrinsic changes in the illumination of the nebula. Our narrow-band observations also found that H_2 knots are found nearly twice as far to the east of the source as to its west, and that H_2 emission extends farther east of the source than the previously known CO outflow.Comment: 19 pages, 6 figures, 1 tabl

    Exploiting the pathway structure of metabolism to reveal high-order epistasis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Biological robustness results from redundant pathways that achieve an essential objective, e.g. the production of biomass. As a consequence, the biological roles of many genes can only be revealed through multiple knockouts that identify a <it>set </it>of genes as essential for a given function. The identification of such "epistatic" essential relationships between network components is critical for the understanding and eventual manipulation of robust systems-level phenotypes.</p> <p>Results</p> <p>We introduce and apply a network-based approach for genome-scale metabolic knockout design. We apply this method to uncover over 11,000 minimal knockouts for biomass production in an <it>in silico </it>genome-scale model of <it>E. coli</it>. A large majority of these "essential sets" contain 5 or more reactions, and thus represent complex epistatic relationships between components of the <it>E. coli </it>metabolic network.</p> <p>Conclusion</p> <p>The complex minimal biomass knockouts discovered with our approach illuminate robust essential systems-level roles for reactions in the <it>E. coli </it>metabolic network. Unlike previous approaches, our method yields results regarding high-order epistatic relationships and is applicable at the genome-scale.</p

    The microaerophilic microbiota of de-novo paediatric inflammatory bowel disease: the BISCUIT study

    Get PDF
    &lt;p&gt;Introduction: Children presenting for the first time with inflammatory bowel disease (IBD) offer a unique opportunity to study aetiological agents before the confounders of treatment. Microaerophilic bacteria can exploit the ecological niche of the intestinal epithelium; Helicobacter and Campylobacter are previously implicated in IBD pathogenesis. We set out to study these and other microaerophilic bacteria in de-novo paediatric IBD.&lt;/p&gt; &lt;p&gt;Patients and Methods: 100 children undergoing colonoscopy were recruited including 44 treatment naïve de-novo IBD patients and 42 with normal colons. Colonic biopsies were subjected to microaerophilic culture with Gram-negative isolates then identified by sequencing. Biopsies were also PCR screened for the specific microaerophilic bacterial groups: Helicobacteraceae, Campylobacteraceae and Sutterella wadsworthensis.&lt;/p&gt; &lt;p&gt;Results: 129 Gram-negative microaerophilic bacterial isolates were identified from 10 genera. The most frequently cultured was S. wadsworthensis (32 distinct isolates). Unusual Campylobacter were isolated from 8 subjects (including 3 C. concisus, 1 C. curvus, 1 C. lari, 1 C. rectus, 3 C. showae). No Helicobacter were cultured. When comparing IBD vs. normal colon control by PCR the prevalence figures were not significantly different (Helicobacter 11% vs. 12%, p = 1.00; Campylobacter 75% vs. 76%, p = 1.00; S. wadsworthensis 82% vs. 71%, p = 0.312).&lt;/p&gt; &lt;p&gt;Conclusions: This study offers a comprehensive overview of the microaerophilic microbiota of the paediatric colon including at IBD onset. Campylobacter appear to be surprisingly common, are not more strongly associated with IBD and can be isolated from around 8% of paediatric colonic biopsies. S. wadsworthensis appears to be a common commensal. Helicobacter species are relatively rare in the paediatric colon.&lt;/p&gt

    Controlling the Outcome of the Toll-Like Receptor Signaling Pathways

    Get PDF
    The Toll-Like Receptors (TLRs) are proteins involved in the immune system that increase cytokine levels when triggered. While cytokines coordinate the response to infection, they appear to be detrimental to the host when reaching too high levels. Several studies have shown that the deletion of specific TLRs was beneficial for the host, as cytokine levels were decreased consequently. It is not clear, however, how targeting other components of the TLR pathways can improve the responses to infections. We applied the concept of Minimal Cut Sets (MCS) to the ihsTLR v1.0 model of the TLR pathways to determine sets of reactions whose knockouts disrupt these pathways. We decomposed the TLR network into 34 modules and determined signatures for each MCS, i.e. the list of targeted modules. We uncovered 2,669 MCS organized in 68 signatures. Very few MCS targeted directly the TLRs, indicating that they may not be efficient targets for controlling these pathways. We mapped the species of the TLR network to genes in human and mouse, and determined more than 10,000 Essential Gene Sets (EGS). Each EGS provides genes whose deletion suppresses the network's outputs

    Children's game library as a Unique Extracurricular Educational Establishment in the USSR (the middle of the 20th century)

    Get PDF
    The article reveals the history of emergence and work of children's game libraries in the USSR in the middle of the 20th century. The first children's game libraries, which were educational establishments where children could come and play different games, using various game and sport equipment free of charge, appeared in the 1930th and became wide spread in the USSR in the 1930th - 1950th. Children's game libraries had different tasks of their work (organizing children's cultural leisure time, increasing the educational and political levels of children's games and entertainments which were conducted in schools, summer camps and extracurricular educational establishments). They also had different directions of their work, namely: organizational, methodic, educational, experimental, instructive and consultative directions. It has been shown in the article that children’s game libraries had great results of their work (they involved a lot of children and adults in their activities; the network of children's game libraries began to grow; a lot of new toys and games were created and produced by them). However, children's game libraries faced certain difficulties in their work, namely: absence of own premises of children’s game libraries, lack of enough support for their activities by some educational institutions and teaching staff, lack of the required amount of toys and games, insufficient instructive and publishing activities of children’s game libraries

    Discovery and saturation analysis of cancer genes across 21 tumour types

    Get PDF
    Although a few cancer genes are mutated in a high proportion of tumours of a given type (>20%), most are mutated at intermediate frequencies (2–20%). To explore the feasibility of creating a comprehensive catalogue of cancer genes, we analysed somatic point mutations in exome sequences from 4,742 human cancers and their matched normal-tissue samples across 21 cancer types. We found that large-scale genomic analysis can identify nearly all known cancer genes in these tumour types. Our analysis also identified 33 genes that were not previously known to be significantly mutated in cancer, including genes related to proliferation, apoptosis, genome stability, chromatin regulation, immune evasion, RNA processing and protein homeostasis. Down-sampling analysis indicates that larger sample sizes will reveal many more genes mutated at clinically important frequencies. We estimate that near-saturation may be achieved with 600–5,000 samples per tumour type, depending on background mutation frequency. The results may help to guide the next stage of cancer genomics
    corecore