306 research outputs found

    The gut microbiome in intestinal diseases:and the infrastructure to investigate it

    Get PDF

    Gut microbial species and metabolic pathways associated with response to treatment with immune checkpoint inhibitors in metastatic melanoma

    Get PDF
    In patients with metastatic cancer, gut microbiome composition differs between responder and non-responders to immune checkpoint inhibitors. However, there is little consensus on the microbiome taxa associated with response or lack of response. Additionally, recognized confounders of gut microbiome composition have generally not been taken into account. In this study, metagenomic shotgun sequencing was performed on freshly frozen pre-treatment stool samples from 25 patients (12 responders and 13 non-responders) with unresectable metastatic melanoma treated with immune checkpoint inhibitors. We observed no significant differences in alpha-diversity and bacterial prevalence between responders and non-responders (P > 0.05). In a zero-inflated multivariate analysis, correcting for important confounders such as age, BMI and use of antibiotics, 68 taxa showed differential abundance between responders and non-responders (false-discovery rate <0.05). Cox-regression analysis showed longer overall survival for carriers of Streptococcus parasanguinis [hazard ratio (HR): 6.9] and longer progression-free survival for carriers of Bacteroides massiliensis (HR: 3.79). In contrast, carriership of Peptostreptococcaceae (unclassified species) was associated with shorter overall survival (HR 0.18) and progression-free survival (HR 0.11). Finally, 17 microbial pathways differentially abundant between responder and non-responders were observed. These results underline the association between gut microbiome composition and response to immune checkpoint inhibitor therapy in a cohort of patients with cutaneous melanoma

    Anti-inflammatory Gut Microbial Pathways Are Decreased During Crohn's Disease Exacerbations

    Get PDF
    BACKGROUND AND AIMS: Crohn's disease [CD] is a chronic inflammatory disorder of the gastrointestinal tract characterised by alternating periods of exacerbation and remission. We hypothesised that changes in the gut microbiome are associated with CD exacerbations, and therefore aimed to correlate multiple gut microbiome features to CD disease activity. METHODS: Faecal microbiome data generated using whole-genome metagenomic shotgun sequencing of 196 CD patients were of obtained from the 1000IBD cohort [one sample per patient]. Patient disease activity status at time of sampling was determined by re-assessing clinical records 3 years after faecal sample production. Faecal samples were designated as taken 'in an exacerbation' or 'in remission'. Samples taken 'in remission' were further categorised as 'before the next exacerbation' or 'after the last exacerbation', based on the exacerbation closest in time to the faecal production date. CD activity was correlated with gut microbial composition and predicted functional pathways via logistic regressions using MaAsLin software. RESULTS: In total, 105 bacterial pathways were decreased during CD exacerbation (false-discovery rate [FDR] <0.1) in comparison with the gut microbiome of patients both before and after an exacerbation. Most of these decreased pathways exert anti-inflammatory properties facilitating the biosynthesis and fermentation of various amino acids [tryptophan, methionine, and arginine], vitamins [riboflavin and thiamine], and short-chain fatty acids [SCFAs]. CONCLUSIONS: CD exacerbations are associated with a decrease in microbial genes involved in the biosynthesis of the anti-inflammatory mediators riboflavin, thiamine, and folate, and SCFAs, suggesting that increasing the intestinal abundances of these mediators might provide new treatment opportunities. These results were generated using bioinformatic analyses of cross-sectional data and need to be replicated using time-series and wet lab experiments

    Long-term dietary patterns are associated with pro-inflammatory and anti-inflammatory features of the gut microbiome

    Get PDF
    Objective The microbiome directly affects the balance of pro-inflammatory and anti-inflammatory responses in the gut. As microbes thrive on dietary substrates, the question arises whether we can nourish an anti-inflammatory gut ecosystem. We aim to unravel interactions between diet, gut microbiota and their functional ability to induce intestinal inflammation. Design We investigated the relation between 173 dietary factors and the microbiome of 1425 individuals spanning four cohorts: Crohn's disease, ulcerative colitis, irritable bowel syndrome and the general population. Shotgun metagenomic sequencing was performed to profile gut microbial composition and function. Dietary intake was assessed through food frequency questionnaires. We performed unsupervised clustering to identify dietary patterns and microbial clusters. Associations between diet and microbial features were explored per cohort, followed by a meta-analysis and heterogeneity estimation. Results We identified 38 associations between dietary patterns and microbial clusters. Moreover, 61 individual foods and nutrients were associated with 61 species and 249 metabolic pathways in the meta-analysis across healthy individuals and patients with IBS, Crohn's disease and UC (false discovery rate Conclusion We identified dietary patterns that consistently correlate with groups of bacteria with shared functional roles in both, health and disease. Moreover, specific foods and nutrients were associated with species known to infer mucosal protection and anti-inflammatory effects. We propose microbial mechanisms through which the diet affects inflammatory responses in the gut as a rationale for future intervention studies

    Habitual dietary intake of IBD patients differs from population controls:a case-control study

    Get PDF
    BACKGROUND: Since evidence-based dietary guidelines are lacking for IBD patients, they tend to follow "unguided" dietary habits; potentially leading to nutritional deficiencies and detrimental effects on disease course. Therefore, we compared dietary intake of IBD patients with controls. METHODS: Dietary intake of macronutrients and 25 food groups of 493 patients (207 UC, 286 CD), and 1291 controls was obtained via a food frequency questionnaire. RESULTS: 38.6% of patients in remission had protein intakes below the recommended 0.8 g/kg and 86.7% with active disease below the recommended 1.2 g/kg. Multinomial logistic regression, corrected for age, gender and BMI, showed that (compared to controls) UC patients consumed more meat and spreads, but less alcohol, breads, coffee and dairy; CD patients consumed more non-alcoholic drinks, potatoes, savoury snacks and sugar and sweets but less alcohol, dairy, nuts, pasta and prepared meals. Patients with active disease consumed more meat, soup and sugar and sweets but less alcohol, coffee, dairy, prepared meals and rice; patients in remission consumed more potatoes and spreads but less alcohol, breads, dairy, nuts, pasta and prepared meals. CONCLUSIONS: Patients avoiding potentially favourable foods and gourmandizing potentially unfavourable foods are of concern. Special attention is needed for protein intake in the treatment of these patients

    Impact of commonly used drugs on the composition and metabolic function of the gut microbiota

    Get PDF
    The human gut microbiota has now been associated with drug responses and efficacy, while chemical compounds present in these drugs can also impact the gut bacteria. However, drug–microbe interactions are still understudied in the clinical context, where polypharmacy and comorbidities co-occur. Here, we report relations between commonly used drugs and the gut microbiome. We performed metagenomics sequencing of faecal samples from a population cohort and two gastrointestinal disease cohorts. Differences between users and non-users were analysed per cohort, followed by a meta-analysis. While 19 of 41 drugs are found to be associated with microbial features, when controlling for the use of multiple medications, proton-pump inhibitors, metformin, antibiotics and laxatives show the strongest associations with the microbiome. We here provide evidence for extensive changes in taxonomy, metabolic potential and resistome in relation to commonly used drugs. This paves the way for future studies and has implications for current microbiome studies by demonstrating the need to correct for multiple drug use

    A combination of fecal calprotectin and human beta-defensin 2 facilitates diagnosis and monitoring of inflammatory bowel disease

    Get PDF
    Inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS) show a large overlap in clinical presentation, which presents diagnostic challenges. As a consequence, invasive and burdensome endoscopies are often used to distinguish between IBD and IBS. Here, we aimed to develop a noninvasive fecal test that can distinguish between IBD and IBS and reduce the number of endoscopies. We used shotgun metagenomic sequencing to analyze the composition and function of gut microbiota of 169 IBS patients, 447 IBD patients and 1044 population controls and measured fecal Calprotectin (FCal), human beta defensin 2 (HBD2), and chromogranin A (CgA) in these samples. These measurements were used to construct training sets (75% of data) for logistic regression and machine learning models to differentiate IBS from IBD and inactive from active IBD. The results were replicated on test sets (remaining 25% of the data) and microbiome data obtained using 16S sequencing. Fecal HBD2 showed high sensitivity and specificity for differentiating between IBD and IBS (sensitivity = 0.89, specificity = 0.76), while the inclusion of microbiome data with biomarkers (HBD2 and FCal) showed a potential for improvement in predictive power (optimal sensitivity = 0.87, specificity = 0.93). Shotgun sequencing-based models produced comparable results using 16S-sequencing data. HBD2 and FCal were found to have predictive power for IBD disease activity (AUC approximate to 0.7). HBD2 is a novel biomarker for IBD in patients with gastro-intestinal complaints, especially when used in combination with FCal and potentially in combination with gut microbiome data

    Transkingdom Networks: A Systems Biology Approach to Identify Causal Members of Host-Microbiota Interactions

    Full text link
    Improvements in sequencing technologies and reduced experimental costs have resulted in a vast number of studies generating high-throughput data. Although the number of methods to analyze these "omics" data has also increased, computational complexity and lack of documentation hinder researchers from analyzing their high-throughput data to its true potential. In this chapter we detail our data-driven, transkingdom network (TransNet) analysis protocol to integrate and interrogate multi-omics data. This systems biology approach has allowed us to successfully identify important causal relationships between different taxonomic kingdoms (e.g. mammals and microbes) using diverse types of data

    Patient attitudes towards faecal sampling for gut microbiome studies and clinical care reveal positive engagement and room for improvement

    Get PDF
    Faecal sample collection is crucial for gut microbiome research and its clinical applications. However, while patients and healthy volunteers are routinely asked to provide stool samples, their attitudes towards sampling remain largely unknown. Here, we investigate the attitudes of 780 Dutch patients, including participants in a large Inflammatory Bowel Disease (IBD) gut microbiome cohort and population controls, in order to identify barriers to sample collection and provide recommendations for gut microbiome researchers and clinicians. We sent questionnaires to 660 IBD patients and 112 patients with other disorders who had previously been approached to participate in gut microbiome studies. We also conducted 478 brief interviews with participants in our general population cohort who had collected stool samples. Statistical analysis of the data was performed using R. 97.4% of respondents reported that they had willingly participated in stool sample collection for gut microbiome research, and most respondents (82.9%) and interviewees (95.6%) indicated willingness to participate again, with their motivations for participating being mainly altruistic (57.0%). Responses indicated that storing stool samples in the home freezer for a prolonged time was the main barrier to participation (52.6%), but clear explanations of the sampling procedures and their purpose increased participant willingness to collect and freeze samples (P = 0.046, P = 0.003). To account for participant concerns, gut microbiome researchers establishing cohorts and clinicians trying new faecal tests should provide clear instructions, explain the rationale behind their protocol, consider providing a small freezer and inform patients about study outcomes. By assessing the attitudes, motives and barriers surrounding participation in faecal sample collection, we provide important information that will contribute to the success of gut microbiome research and its near-future clinical applications
    • …
    corecore