20 research outputs found

    Kidney metabolism and acid–base control: back to the basics

    Full text link
    Kidneys are central in the regulation of multiple physiological functions, such as removal of metabolic wastes and toxins, maintenance of electrolyte and fluid balance, and control of pH homeostasis. In addition, kidneys participate in systemic gluconeogenesis and in the production or activation of hormones. Acid–base conditions influence all these functions concomitantly. Healthy kidneys properly coordinate a series of physiological responses in the face of acute and chronic acid–base disorders. However, injured kidneys have a reduced capacity to adapt to such challenges. Chronic kidney disease patients are an example of individuals typically exposed to chronic and progressive metabolic acidosis. Their organisms undergo a series of alterations that brake large detrimental changes in the homeostasis of several parameters, but these alterations may also operate as further drivers of kidney damage. Acid–base disorders lead not only to changes in mechanisms involved in acid–base balance maintenance, but they also affect multiple other mechanisms tightly wired to it. In this review article, we explore the basic renal activities involved in the maintenance of acid–base balance and show how they are interconnected to cell energy metabolism and other important intracellular activities. These intertwined relationships have been investigated for more than a century, but a modern conceptual organization of these events is lacking. We propose that pH homeostasis indissociably interacts with central pathways that drive progression of chronic kidney disease, such as inflammation and metabolism, independent of etiology

    Ovarian cancer G protein-coupled receptor 1 deficiency exacerbates crystal deposition and kidney injury in oxalate nephropathy in female mice

    Full text link
    Ovarian cancer G protein-coupled receptor 1 (OGR1) (Gpr68) and G protein-coupled receptor 4 (GPR4) (Gpr4) are proton-activated G protein-coupled receptors that are stimulated upon increased extracellular acidity. These receptors have various physiological and pathophysiological roles in renal acid–base physiology, tissue inflammation, and fibrosis among others. Their function in injured renal tissue, however, remains mostly unclear. To address this, we investigated their role in crystalline nephropathy by increasing the oxalate intake of GPR4 KO and OGR1 KO mice. After 10 days of high-oxalate intake and 4 days of recovery, renal crystal content, histopathology, filtration function, and inflammation were assessed. While GPR4 deficiency did not show major alterations in disease progression, OGR1 KO mice had higher urinary calcium levels and exacerbated crystal accumulation accompanied by decreased creatinine clearance and urea excretion and a decreased presence of regulatory T (Treg) cells in kidney tissue. When lowering the severity of the kidney injury, OGR1 KO mice were more prone to develop crystalline nephropathy. In this setting, OGR1 KO mice displayed an increased activation of the immune system and a higher production of proinflammatory cytokines by T cells and macrophages. Taken together, in the acute setting of oxalate-induced nephropathy, the lack of the proton-activated G protein-coupled receptor (GPCR) GPR4 does not influence disease. OGR1 deficiency, however, increases crystal deposition leading to impaired kidney function. Thus, OGR1 may be important to limit kidney crystal deposition, which might subsequently be relevant for the pathophysiology of oxalate kidney stones or other crystallopathies

    The Effect of Thiazide Diuretics on Urinary Prostaglandin E2 Excretion and Serum Sodium in the General Population

    Get PDF
    Context:Thiazide-induced hyponatremia is one of the most common forms of hyponatremia, but its pathogenesis is incompletely understood. Recent clinical data suggest links with prostaglandin E2 (PGE2) and a single nucleotide polymorphism (SNP) in the prostaglandin transporter gene (SLCO2A1), but it is unknown if these findings also apply to the general population. Objective:To study the associations between serum sodium, thiazide diuretics, urinary excretions of PGE2, and its metabolite (PGEM), and the rs34550074 SNP in SLCO2A1 in the general population. Design:Prospective population-based cohort study (Rotterdam Study). Setting:General population. Participants:2178 participants (65% female, age 64 +/- 8 years) Intervention(s):None. Main Outcome:Measure(s) Serum sodium levels. Results:Higher urinary PGE2 excretion was associated with lower serum sodium: difference in serum sodium for each 2-fold higher PGE2 -0.19 mmol/L [95% confidence interval (CI) -0.31 to -0.06], PGEM -0.29 mmol/L (95% CI -0.41 to -0.17). This association was stronger in thiazide users (per 2-fold higher PGE2 -0.73 vs -0.12 mmol/L and PGEM -0.6 vs -0.25 mmol/L, P for interaction <.05 for both). A propensity score matching analysis of thiazide vs non-thiazide users yielded similar results. The SNP rs34550074 was not associated with lower serum sodium or higher urinary PGE2 or PGEM excretion in thiazide or non-thiazide users. Conclusion:Serum sodium is lower in people with higher urinary PGE2 and PGEM excretion, and this association is stronger in thiazide users. This suggests that PGE2-mediated water reabsorption regulates serum sodium, which is relevant for the pathogenesis of hyponatremia in general and thiazide-induced hyponatremia specifically

    The Effect of Thiazide Diuretics on Urinary Prostaglandin E2 Excretion and Serum Sodium in the General Population

    Get PDF
    Context:Thiazide-induced hyponatremia is one of the most common forms of hyponatremia, but its pathogenesis is incompletely understood. Recent clinical data suggest links with prostaglandin E2 (PGE2) and a single nucleotide polymorphism (SNP) in the prostaglandin transporter gene (SLCO2A1), but it is unknown if these findings also apply to the general population. Objective:To study the associations between serum sodium, thiazide diuretics, urinary excretions of PGE2, and its metabolite (PGEM), and the rs34550074 SNP in SLCO2A1 in the general population. Design:Prospective population-based cohort study (Rotterdam Study). Setting:General population. Participants:2178 participants (65% female, age 64 +/- 8 years) Intervention(s):None. Main Outcome:Measure(s) Serum sodium levels. Results:Higher urinary PGE2 excretion was associated with lower serum sodium: difference in serum sodium for each 2-fold higher PGE2 -0.19 mmol/L [95% confidence interval (CI) -0.31 to -0.06], PGEM -0.29 mmol/L (95% CI -0.41 to -0.17). This association was stronger in thiazide users (per 2-fold higher PGE2 -0.73 vs -0.12 mmol/L and PGEM -0.6 vs -0.25 mmol/L, P for interaction <.05 for both). A propensity score matching analysis of thiazide vs non-thiazide users yielded similar results. The SNP rs34550074 was not associated with lower serum sodium or higher urinary PGE2 or PGEM excretion in thiazide or non-thiazide users. Conclusion:Serum sodium is lower in people with higher urinary PGE2 and PGEM excretion, and this association is stronger in thiazide users. This suggests that PGE2-mediated water reabsorption regulates serum sodium, which is relevant for the pathogenesis of hyponatremia in general and thiazide-induced hyponatremia specifically

    Serum sclerostin is associated with recurrent kidney stone formation independent of hypercalciuria

    Get PDF
    ABSTRACT Background Kidney stones are frequent in industrialized countries with a lifetime risk of 10 to 15%. A high percentage of individuals experience recurrence. Calcium-containing stones account for more than 80% of kidney stones. Diet, environmental factors, behavior, and genetic variants contribute to the development of kidney stones. Osteocytes excrete the 21 kDa glycoprotein sclerostin, which inhibits bone formation by osteoblasts. Animal data suggests that sclerostin might directly or indirectly regulate calcium excretion via the kidney. As hypercalciuria is one of the most relevant risk factors for kidney stones, sclerostin might possess pathogenic relevance in nephrolithiasis. Methods We performed a prospective cross-sectional observational controlled study in 150 recurrent kidney stone formers (rKSF) to analyse the association of sclerostin with known stone risk factors and important modulators of calcium-phosphate metabolism. Serum sclerostin levels were determined at the first visit. As controls, we used 388 non-stone formers from a large Swiss epidemiological cohort. Results Sclerostin was mildly increased in rKSF in comparison to controls. This finding was more pronounced in women compared to men. Logistic regression indicated an association of serum sclerostin with rKSF status. In hypercalciuric individuals, sclerostin levels were not different from normocalciuric patients. In Spearman correlation analysis we found a positive correlation between sclerostin, age, and BMI and a negative correlation with eGFR. There was a weak correlation with iPTH and intact FGF 23. In contrast, serum sclerostin levels were not associated with 25-OH Vitamin D3, 1,25-dihydroxy-Vitamin D3, urinary calcium and phosphate or other urinary lithogenic risk factors. Conclusion This is the first prospective controlled study investigating serum sclerostin in rKSF. Sclerostin levels were increased in rKSF independent of hypercalciuria and significantly associated with the status as rKSF. It appears that mechanisms other than hypercalciuria may be involved and thus further studies are required to elucidate underlying pathways

    Calcineurin inhibitor effects on kidney electrolyte handling and blood pressure:tacrolimus versus voclosporin

    Get PDF
    Background Calcineurin inhibitors (CNIs) affect kidney electrolyte handling and blood pressure (BP) through an effect on the distal tubule. The second-generation CNI voclosporin causes hypomagnesaemia and hypercalciuria less often than tacrolimus. This suggests different effects on the distal tubule, but this has not yet been investigated experimentally. Methods Rats were treated with voclosporin, tacrolimus or vehicle for 28 days. Dosing was based on a pilot experiment to achieve clinically therapeutic concentrations. Drug effects were assessed by electrolyte handling at day 18 and 28, thiazide testing at day 20, telemetric BP recordings and analysis of messenger RNA (mRNA) and protein levels of distal tubular transporters at day 28. Results Compared with vehicle, tacrolimus but not voclosporin significantly increased the fractional excretions of calcium (>4-fold), magnesium and chloride (both 1.5-fold) and caused hypomagnesaemia. Tacrolimus but not voclosporin significantly reduced distal tubular transporters at the mRNA and/or protein level, including the sodium-chloride cotransporter, transient receptor melastatin 6, transient receptor potential vanilloid 5, cyclin M2, sodium-calcium exchanger and calbindin-D28K. Tacrolimus but not voclosporin reduced the mRNA level and urinary excretion of epidermal growth factor. The saluretic response to hydrochlorothiazide at day 20 was similar in the voclosporin and vehicle groups, whereas it was lower in the tacrolimus group. The phosphorylated form of the sodium-chloride cotransporter was significantly higher at day 28 in rats treated with voclosporin than in those treated with tacrolimus. Tacrolimus transiently increased BP, whereas voclosporin caused a gradual but persistent increase in BP that was further characterized by high renin, normal aldosterone and low endothelin-1. Conclusions In contrast to tacrolimus, voclosporin does not cause hypercalciuria and hypomagnesaemia, but similarly causes hypertension. Our data reveal differences between the distal tubular effects of tacrolimus and voclosporin and provide a pathophysiological basis for the clinically observed differences between the two CNIs.Graphical Abstrac

    Calcineurin inhibitor effects on kidney electrolyte handling and blood pressure:tacrolimus versus voclosporin

    Get PDF
    Background Calcineurin inhibitors (CNIs) affect kidney electrolyte handling and blood pressure (BP) through an effect on the distal tubule. The second-generation CNI voclosporin causes hypomagnesaemia and hypercalciuria less often than tacrolimus. This suggests different effects on the distal tubule, but this has not yet been investigated experimentally. Methods Rats were treated with voclosporin, tacrolimus or vehicle for 28 days. Dosing was based on a pilot experiment to achieve clinically therapeutic concentrations. Drug effects were assessed by electrolyte handling at day 18 and 28, thiazide testing at day 20, telemetric BP recordings and analysis of messenger RNA (mRNA) and protein levels of distal tubular transporters at day 28. Results Compared with vehicle, tacrolimus but not voclosporin significantly increased the fractional excretions of calcium (>4-fold), magnesium and chloride (both 1.5-fold) and caused hypomagnesaemia. Tacrolimus but not voclosporin significantly reduced distal tubular transporters at the mRNA and/or protein level, including the sodium-chloride cotransporter, transient receptor melastatin 6, transient receptor potential vanilloid 5, cyclin M2, sodium-calcium exchanger and calbindin-D28K. Tacrolimus but not voclosporin reduced the mRNA level and urinary excretion of epidermal growth factor. The saluretic response to hydrochlorothiazide at day 20 was similar in the voclosporin and vehicle groups, whereas it was lower in the tacrolimus group. The phosphorylated form of the sodium-chloride cotransporter was significantly higher at day 28 in rats treated with voclosporin than in those treated with tacrolimus. Tacrolimus transiently increased BP, whereas voclosporin caused a gradual but persistent increase in BP that was further characterized by high renin, normal aldosterone and low endothelin-1. Conclusions In contrast to tacrolimus, voclosporin does not cause hypercalciuria and hypomagnesaemia, but similarly causes hypertension. Our data reveal differences between the distal tubular effects of tacrolimus and voclosporin and provide a pathophysiological basis for the clinically observed differences between the two CNIs.Graphical Abstrac

    Comparative analysis of metabolic and respiratory acidosis effects on the sodium hydrogen exchanger isoform 3 (NHE3).

    No full text
    O parálogo 3 do trocador Na+/H+ (NHE3) é essencial para a reabsorção de HCO3- nos túbulos proximais renais e sua expressão e função adaptam-se às diferentes condições ácido-base do organismo. O objetivo desta tese foi avaliar quais as diferenças entre os efeitos da acidose metabólica (AM) e respiratória (AR) sobre a regulação do NHE3 e identificar variáveis responsáveis pelas respostas adaptativas observadas. Em células OKP, a AM foi simulada diminuindo a [HCO3-] do meio de cultura e a AR aumentando a pCO2 ambiente por 24 h. Foram observados os efeitos das acidoses sobre o RNAm-Nhe3, a presença da proteína-NHE3 na membrana celular e a atividade promotora do gene do Nhe3. Concluiu-se que o pH extracelular não é a variável físico-química responsável por estimular a expressão do NHE3, contudo é um importante candidato à variável responsável por regular o tráfego da proteína para a membrana. Além disso, a região de -471 a -153 pb em relação ao sítio de início de transcrição do promotor do gene do Nhe3 contém prováveis reguladores positivos que atuam em resposta à AM.The Na+/H+ exchanger 3 (NHE3) is essential for HCO3- reabsorption in renal proximal tubules and its expression and function must adapt to acid-base conditions. The goal of the presente study was to evaluate whether there are differences between metabolic (MA) and respiratory acidosis (RA) with regard to NHE3 modulation and to identify variables that may trigger these distinct adaptive responses. In OKP cells, MA was achieved by lowering [HCO3-] in the cell culture medium and RA by increasing pCO2 in the incubator chamber for 24 h. The effects of both acidosis on Nhe3 mRNA levels, cell-surface NHE3 expression and promoter activity were evaluated. In summary, it was concluded that low extracellular pH is not the physical-chemical variable that up-regulates NHE3 expression, however, extracellular pH is a candidate for the variable related to the NHE3 displacement to the apical membrane. Moreover, the Nhe3 gene promoter region spanning from -471 to -153 base pairs upstream from the transcriptional start site contains putative enhancers regulated in response to MA

    Insights from systems biology in physiological studies: learning from context

    Get PDF
    Systems biology presents an integrated view of biological systems, focusing on the relations between elements, whether functional or evolutionary, and providing a rich framework for the comprehension of life. At the same time, many low-throughput experimental studies are performed without influence from this integrated view, whilst high-throughput experiments use low-throughput results in their validation and interpretation. We propose an inversion in this logic, and ask which benefits could be obtained from a holistic view coming from high-throughput studies-and systems biology in particular-in interpreting and designing low-throughput experiments. By exploring some key examples from the renal and adrenal physiology, we try to show that network and modularity theory, along with observed patterns of association between elements in a biological system, can have profound effects on our ability to draw meaningful conclusions from experiments
    corecore