405 research outputs found

    An automated procedure for material parameter evaluation for viscoplastic constitutive models

    Get PDF
    An automated procedure is presented for evaluating the material parameters in Walker's exponential viscoplastic constitutive model for metals at elevated temperature. Both physical and numerical approximations are utilized to compute the constants for Inconel 718 at 1100 F. When intermediate results are carefully scrutinized and engineering judgement applied, parameters may be computed which yield stress output histories that are in agreement with experimental results. A qualitative assessment of the theta-plot method for predicting the limiting value of stress is also presented. The procedure may also be used as a basis to develop evaluation schemes for other viscoplastic constitutive theories of this type

    An experimental comparison of several current viscoplastic constitutive models at elevated temperature

    Get PDF
    Four current viscoplastic models are compared experimentally for Inconel 718 at 593 C. This material system responds with apparent negative strain rate sensitivity, undergoes cyclic work softening, and is susceptible to low cycle fatigue. A series of tests were performed to create a data base from which to evaluate material constants. A method to evaluate the constants is developed which draws on common assumptions for this type of material, recent advances by other researchers, and iterative techniques. A complex history test, not used in calculating the constants, is then used to compare the predictive capabilities of the models. The combination of exponentially based inelastic strain rate equations and dynamic recovery is shown to model this material system with the greatest success. The method of constant calculation developed was successfully applied to the complex material response encountered. Backstress measuring tests were found to be invaluable and to warrant further development

    Dimensional Reduction for Directed Branched Polymers

    Full text link
    Dimensional reduction occurs when the critical behavior of one system can be related to that of another system in a lower dimension. We show that this occurs for directed branched polymers (DBP) by giving an exact relationship between DBP models in D+1 dimensions and repulsive gases at negative activity in D dimensions. This implies relations between exponents of the two models: γ(D+1)=α(D)\gamma(D+1)=\alpha(D) (the exponent describing the singularity of the pressure), and ν(D+1)=ν(D)\nu_{\perp}(D+1)=\nu(D) (the correlation length exponent of the repulsive gas). It also leads to the relation θ(D+1)=1+σ(D)\theta(D+1)=1+\sigma(D), where σ(D)\sigma(D) is the Yang-Lee edge exponent. We derive exact expressions for the number of DBP of size N in two dimensions.Comment: 7 pages, 1 eps figure, ref 24 correcte

    Ice Age Epochs and the Sun's Path Through the Galaxy

    Full text link
    We present a calculation of the Sun's motion through the Milky Way Galaxy over the last 500 million years. The integration is based upon estimates of the Sun's current position and speed from measurements with Hipparcos and upon a realistic model for the Galactic gravitational potential. We estimate the times of the Sun's past spiral arm crossings for a range in assumed values of the spiral pattern angular speed. We find that for a difference between the mean solar and pattern speed of Omega_Sun - Omega_p = 11.9 +/- 0.7 km/s/kpc the Sun has traversed four spiral arms at times that appear to correspond well with long duration cold periods on Earth. This supports the idea that extended exposure to the higher cosmic ray flux associated with spiral arms can lead to increased cloud cover and long ice age epochs on Earth.Comment: 14 pages, 3 figures, accepted for publication in Ap

    Numerical study of the transition of the four dimensional Random Field Ising Model

    Full text link
    We study numerically the region above the critical temperature of the four dimensional Random Field Ising Model. Using a cluster dynamic we measure the connected and disconnected magnetic susceptibility and the connected and disconnected overlap susceptibility. We use a bimodal distribution of the field with hR=0.35T h_R=0.35T for all temperatures and a lattice size L=16. Through a least-square fit we determine the critical exponents γ \gamma and γˉ \bar{\gamma} . We find the magnetic susceptibility and the overlap susceptibility diverge at two different temperatures. This is coherent with the existence of a glassy phase above Tc T_c . Accordingly with other simulations we find γˉ=2γ \bar{\gamma}=2\gamma . In this case we have a scaling theory with two indipendet critical exponentsComment: 10 pages, 2 figures, Late

    Weighted Mean Field Theory for the Random Field Ising Model

    Full text link
    We consider the mean field theory of the Random Field Ising Model obtained by weighing the many solutions of the mean field equations with Boltzmann-like factors. These solutions are found numerically in three dimensions and we observe critical behavior arising from the weighted sum. The resulting exponents are calculated.Comment: 15 pages of tex using harvmac. 8 postscript figures (fig3.ps is large) in a separate .uu fil

    On the thermodynamics of first-order phase transition smeared by frozen disorder

    Full text link
    The simplified model of first-order transition in a media with frozen long-range transition-temperature disorder is considered. It exhibits the smearing of the transition due to appearance of the intermediate inhomogeneous phase with thermodynamics described by the ground state of the short-range random-field Ising model. Thus the model correctly reproduce the persistence of first-order transition only in dimensions d > 2, which is found in more realistic models. It also allows to estimate the behavior of thermodynamic parameters near the boundaries of the inhomogeneous phase.Comment: 4 page

    How can a glacial inception be predicted?

    Full text link
    The Early Anthropogenic Hypothesis considers that greenhouse gas concentrations should have declined during the Holocene in absence of humankind activity, leading to glacial inception around the present. It partly relies on the fact that present levels of northern summer incoming solar radiation are close to those that, in the past, preceded a glacial inception phenomenon, associated to declines in greenhouse gas concentrations. However, experiments with various numerical models of glacial cycles show that next glacial inception may still be delayed by several ten thousands of years, even with the assumption of greenhouse gas concentration declines during the Holocene. Furthermore, as we show here, conceptual models designed to capture the gross dynamics of the climate system as a whole suggest also that small disturbances may sometimes cause substantial delays in glacial events, causing a fair level of unpredictability on ice age dynamics. This suggests the need of a validated mathematical description of the climate system dynamics that allows us to quantify uncertainties on predictions. Here, it is proposed to organise our knowledge about the physics and dynamics of glacial cycles through a Bayesian inference network. Constraints on the physics and dynamics of climate can be encapsulated into a stochastic dynamical system. These constraints include, in particular, estimates of the sensitivity of the components of climate to external forcings, inferred from plans of experiments with large simulators of the atmosphere, oceans and ice sheets. On the other hand, palaeoclimate observations are accounted for through a process of parameter calibration. We discuss promises and challenges raised by this programme.Comment: Contribution to the special issue of 'The Holocene' on the Early Anthropogenic Hypotheses. W.R. Ruddiman, M. Crucifix, F. Oldfiel

    Positive temperature versions of two theorems on first-passage percolation

    Full text link
    The estimates on the fluctuations of first-passsage percolation due to Talagrand (a tail bound) and Benjamini--Kalai--Schramm (a sublinear variance bound) are transcribed into the positive-temperature setting of random Schroedinger operators.Comment: 15 pp; to appear in GAFA Seminar Note
    corecore