1,508 research outputs found

    Role of the imprinted allele of the Cdkn1c gene in mouse neocortical development

    Get PDF
    Imprinted genes are expressed from only one allele in a parent of origin–specific manner. The cyclin-dependent kinase inhibitor p57^{kip2} is encoded by an imprinted gene Cdkn1c, with the paternal allele being silenced. The possible expression and function of the paternal allele of Cdkn1c have remained little studied, however. We now show that the paternal allele of the Cdkn1c gene is expressed at a low level in the developing mouse neocortex. Surprisingly, the central nervous system-specific conditional deletion of the paternal allele (pat cKO) at the Cdkn1c locus resulted in a marked reduction in brain size. Furthermore, pat cKO gradually reduced the number of neural stem-progenitor cells (NPCs) during neocortical development, and thus reduced the number of upper-layer neurons, which were derived from late-stage NPCs. Our results thus show that the paternal allele of the Cdkn1c locus plays a key role in maintenance of NPCs during neocortical development

    FKF1 conveys timing information for CONSTANS stabilization in photoperiodic flowering

    Get PDF
    Plants use day-length information to coordinate flowering time with the appropriate season to maximize reproduction. In Arabidopsis, the long-day specific expression of CONSTANS (CO) protein is crucial for flowering induction. Although light signaling regulates CO protein stability, the mechanism by which CO is stabilized in the long-day afternoon has remained elusive. Here we demonstrate that FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (FKF1) protein stabilizes CO protein in the afternoon in long days. FKF1 interacts with CO through its LOV domain, and blue light enhances this interaction. In addition, FKF1 simultaneously removes CYCLING DOF FACTOR 1 (CDF1) that represses CO and FLOWERING LOCUS T (FT) transcription. Together with CO transcriptional regulation, FKF1 protein controls robust FT mRNA induction through multiple feedforward mechanisms that accurately control flowering timing

    Search for exotic neutrino-electron interactions using solar neutrinos in XMASS-I

    Get PDF
    We have searched for exotic neutrino-electron interactions that could be produced by a neutrino millicharge, by a neutrino magnetic moment, or by dark photons using solar neutrinos in the XMASS-I liquid xenon detector. We observed no significant signals in 711 days of data. We obtain an upper limit for neutrino millicharge of 5.4×\times1012e^{-12} e at 90\% confidence level assuming all three species of neutrino have common millicharge. We also set flavor dependent limits assuming the respective neutrino flavor is the only one carrying a millicharge, 7.3×1012e7.3 \times 10^{-12} e for νe\nu_e, 1.1×1011e1.1 \times 10^{-11} e for νμ\nu_{\mu}, and 1.1×1011e1.1 \times 10^{-11} e for ντ\nu_{\tau}. These limits are the most stringent yet obtained from direct measurements. We also obtain an upper limit for the neutrino magnetic moment of 1.8×\times1010^{-10} Bohr magnetons. In addition, we obtain upper limits for the coupling constant of dark photons in the U(1)BLU(1)_{B-L} model of 1.3×\times106^{-6} if the dark photon mass is 1×103\times 10^{-3} MeV/c2/c^{2}, and 8.8×\times105^{-5} if it is 10 MeV/c2/c^{2}

    Specific-heat study of superconducting and normal states in FeSe1-xTex (0.6<=x<=1) single crystals: Strong-coupling superconductivity, strong electron-correlation, and inhomogeneity

    Full text link
    The electronic specific heat of as-grown and annealed single-crystals of FeSe1-xTex (0.6<=x<=1) has been investigated. It has been found that annealed single-crystals with x=0.6-0.9 exhibit bulk superconductivity with a clear specific-heat jump at the superconducting (SC) transition temperature, Tc. Both 2Delta_0/kBTc [Delta_0: the SC gap at 0 K estimated using the single-band BCS s-wave model] and Delta C/(gamma_n-gamma_0)Tc [Delta C$: the specific-heat jump at Tc, gamma_n: the electronic specific-heat coefficient in the normal state, gamma_0: the residual electronic specific-heat coefficient at 0 K in the SC state] are largest in the well-annealed single-crystal with x=0.7, i.e., 4.29 and 2.76, respectively, indicating that the superconductivity is of the strong coupling. The thermodynamic critical field has also been estimated. gamma_n has been found to be one order of magnitude larger than those estimated from the band calculations and increases with increasing x at x=0.6-0.9, which is surmised to be due to the increase in the electronic effective mass, namely, the enhancement of the electron correlation. It has been found that there remains a finite value of gamma_0 in the SC state even in the well-annealed single-crystals with x=0.8-0.9, suggesting an inhomogeneous electronic state in real space and/or momentum space.Comment: 22 pages, 1 table, 6 figures, Version 2 has been accepted for publication in J. Phys. Soc. Jp

    Zero-bias conductance peak splitting due to multiband effect in tunneling spectroscopy

    Full text link
    We study how the multiplicity of the Fermi surface affects the zero-bias peak in conductance spectra of tunneling spectroscopy. As case studies, we consider models for organic superconductors κ\kappa-(BEDT-TTF)2_2Cu(NCS)2_2 and (TMTSF)2_2ClO4_4. We find that multiplicity of the Fermi surfaces can lead to a splitting of the zero-bias conductance peak (ZBCP). We propose that the presence/absence of the ZBCP splitting is used as a probe to distinguish the pairing symmetry in κ\kappa-(BEDT-TTF)2_2Cu(NCS)2_2.Comment: 7 pages, 7 figure

    Cardiac-Specific SOCS3 Deletion Prevents In Vivo Myocardial Ischemia Reperfusion Injury through Sustained Activation of Cardioprotective Signaling Molecules.

    Get PDF
    Myocardial ischemia reperfusion injury (IRI) adversely affects cardiac performance and the prognosis of patients with acute myocardial infarction. Although myocardial signal transducer and activator of transcription (STAT) 3 is potently cardioprotective during IRI, the inhibitory mechanism responsible for its activation is largely unknown. The present study aimed to investigate the role of the myocardial suppressor of cytokine signaling (SOCS)-3, an intrinsic negative feedback regulator of the Janus kinase (JAK)-STAT signaling pathway, in the development of myocardial IRI. Myocardial IRI was induced in mice by ligating the left anterior descending coronary artery for 1 h, followed by different reperfusion times. One hour after reperfusion, the rapid expression of JAK-STAT-activating cytokines was observed. We precisely evaluated the phosphorylation of cardioprotective signaling molecules and the expression of SOCS3 during IRI and then induced myocardial IRI in wild-type and cardiac-specific SOCS3 knockout mice (SOCS3-CKO). The activation of STAT3, AKT, and ERK1/2 rapidly peaked and promptly decreased during IRI. This decrease correlated with the induction of SOCS3 expression up to 24 h after IRI in wild-type mice. The infarct size 24 h after reperfusion was significantly reduced in SOCS3-CKO compared with wild-type mice. In SOCS3-CKO mice, STAT3, AKT, and ERK1/2 phosphorylation was sustained, myocardial apoptosis was prevented, and the expression of anti-apoptotic Bcl-2 family member myeloid cell leukemia-1 (Mcl-1) was augmented. Cardiac-specific SOCS3 deletion led to the sustained activation of cardioprotective signaling molecules including and prevented myocardial apoptosis and injury during IRI. Our findings suggest that SOCS3 may represent a key factor that exacerbates the development of myocardial IRI

    Josephson effect in d-wave superconductor junctions in a lattice model

    Full text link
    Josephson current between two d-wave superconductors is calculated by using a lattice model. Here we consider two types of junctions, i.e.i.e., the parallel junction and the mirror-type junction. The maximum Josephson current (Jc)(J_{c}) shows a wide variety of temperature (TT) dependence depending on the misorientation angles and the types of junctions. When the misorientation angles are not zero, the Josephson current shows the low-temperature anomaly because of a zero energy state (ZES) at the interfaces. In the case of mirror-type junctions, JcJ_c has a non monotonic temperature dependence. These results are consistent with the previous results based on the quasiclassical theory. [Y. Tanaka and S. Kashiwaya: Phys. Rev. B \textbf{56} (1997) 892.] On the other hand, we find that the ZES disappears in several junctions because of the Freidel oscillations of the wave function, which is peculiar to the lattice model. In such junctions, the temperature dependence of JcJ_{c} is close to the Ambegaokar-Baratoff relation.Comment: 17 pages, 10 figures, using jpsj2.cls and oversite.st
    corecore