191 research outputs found

    Insulin resistance is an independent correlate of high serum levels of advanced glycation end products (AGEs) and low testosterone in non-diabetic men

    Get PDF
    Advanced glycation end products (AGEs) are involved in cardiovascular disease. Low testosterone level is associated with increased risks of cardiometabolic disorders as well. However, which anthropometric and metabolic variables, including AGEs, are independently correlated with low testosterone is largely unknown. In this study, we investigated whether high serum level of AGEs is one of the independent determinants of low testosterone in non-diabetic men. One hundred thirteen non-diabetic men who did not receive any drugs for hypertension and dyslipidemia underwent a complete history and physical examination, determination of blood chemistries, including serum AGEs and testosterone. Univariate analysis showed that testosterone levels were associated with waist circumference (inversely), diastolic blood pressure (BP) (inversely), mean BP (inversely), triglycerides (inversely), HDL-cholesterol, fasting plasma glucose (inversely), fasting insulin (inversely), homeostasis model assessment of insulin resistance (HOMA-IR) (inversely), AGEs (inversely) and uric acid (inversely). By the use of multiple stepwise regression analyses, HOMA-IR (p = 0.005) and triglycerides levels (p < 0.05) remained significant and were independently related to testosterone levels (R2 = 0.168). HOMA-IR index was one of the independent determinants of serum levels of AGEs as well. The present study demonstrated for the first time that HOMA-IR was independently associated with high serum levels of AGEs and low testosterone in non-diabetic men. Insulin resistance could link elevation of AGEs to testosterone deficiency in non-diabetic men

    Reply

    Get PDF

    AGEs activate mesangial TGF-β–Smad signaling via an angiotensin II type I receptor interaction

    Get PDF
    AGEs activate mesangial TGF-β–Smad signaling via an angiotensin II type I receptor interaction.BackgroundThe renin-angiotensin system (RAS) and the accumulation of advanced glycation end products (AGEs) have been implicated in the pathogenesis of diabetic nephropathy. Whether there is a functional interaction between the RAS and AGEs in diabetic nephropathy is not known. In this study, we investigated whether AGEs could activate autocrine angiotensin II (Ang II) signaling and subsequently induce transforming growth factor-β (TGF-β)–Smad signaling in cultured rat mesangial cells.MethodsThe intracellular formation of reactive oxygen species (ROS) was detected using the fluorescent probe CM-H2DCFDA. Ang II was measured by radioimmunoassay. TGF-β released into media was quantitatively analyzed in an enzyme-linked immunosorbent assay (ELISA). Smad2, p27Kip1 (p27), fibronectin, and receptor for AGEs (RAGE) protein expression were determined by Western blot analysis. TGF-β–inducible promoter activity was analyzed by a luciferase assay. DNA synthesis was evaluated by 5-bomo-2′-deoxyuridine (BrdU) incorporation and de novo protein synthesis was determined by [3H]leucine incorporation.ResultsAGEs increased intracellular ROS generation in mesangial cells, and this effect was significantly inhibited by an antiserum against RAGE. AGEs also were found to stimulate Ang II production in a time- and dose-dependent manner, which was completely prevented by an antioxidant, N-acetylcysteine (NAC). AGE-induced TGF-β overproduction was completely blocked by candesartan, an Ang II type 1 receptor (AT1R) antagonist. Both candesartan and neutralizing antibody against TGF-β completely prevented AGEs-induced Smad2 phosphorylation and TGF-β–inducible promoter activity. Furthermore, AGEs were found to inhibit DNA synthesis and to stimulate de novo protein synthesis and fibronectin production in association with up-regulation of p27. All of these phenomena were completely prevented by candesartan or a polyclonal antibody against TGF-β.ConclusionThe present study suggests that AGE-RAGE–mediated ROS generation activates TGF-β–Smad signaling and subsequently induces mesangial cell hypertrophy and fibronectin synthesis by autocrine production of Ang II. This pathway may provide an important link between metabolic and haemodynamic factors in promoting the development and progression of diabetic nephropathy

    Electrical Storm in Idiopathic Ventricular Fibrillation Is Associated With Early Repolarization

    Get PDF
    ObjectivesThis study sought to characterize patients with idiopathic ventricular fibrillation (IVF) who develop electrical storms.BackgroundSome IVF patients develop ventricular fibrillation (VF) storms, but the characteristics of these patients are poorly known.MethodsNinety-one IVF patients (86% male) were selected after the exclusion of structural heart diseases, primary electrical diseases, and coronary spasm. Electrocardiogram features were compared between the patients with and without electrical storms. A VF storm was defined as VF occurring ≥3 times in 24 h and J waves >0.1 mV above the isoelectric line in contiguous leads.ResultsFourteen (15.4%) patients had VF storms occurring out-of-hospital at night or in the early morning. J waves were more closely associated with VF storms compared to patients without VF storms: 92.9% versus 36.4% (p < 0.0001). VF storms were controlled by intravenous isoproterenol, which attenuated the J-wave amplitude. After the subsidence of VF storms, the J waves decreased to the nondiagnostic level during the entire follow-up period. Implantable cardioverter-defibrillator therapy was administered to all patients during follow-up. Quinidine therapy was limited, but the patients on disopyramide (n = 3), bepridil (n = 1), or isoprenaline (n = 1) were free from VF recurrence, while VF recurred in 5 of the 9 patients who were not given antiarrhythmic drugs.ConclusionsThe VF storms in the IVF patients were highly associated with J waves that showed augmentation prior to the VF onset. Isoproterenol was effective in controlling VF and attenuated the J waves, which diminished to below the diagnostic level during follow-up. VF recurred in patients followed up without antiarrhythmic agents

    LDL-C/HDL-C Ratio Predicts Carotid Intima-Media Thickness Progression Better Than HDL-C or LDL-C Alone

    Get PDF
    High-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C) are strong predictors of atherosclerosis. Statin-induced changes in the ratio of LDL-C to HDL-C (LDL-C/HDL-C) predicted atherosclerosis progression better than LDL-C or HDL-C alone. However, the best predictor of subclinical atherosclerosis remains unknown. Our objective was to investigate this issue by measuring changes in carotid intima-media thickness (IMT). A total of 1,920 subjects received health examinations in 1999, and were followed up in 2007. Changes in IMT (follow-up IMT/baseline IMT × 100) were measured by ultrasonography. Our results showed that changes in IMT after eight years were significantly related to HDL-C (inversely, P < 0.05) and to LDL-C/HDL-C ratio (P < 0.05). When the LDL-C/HDL-C ratios were divided into quartiles, analysis of covariance showed that increases in the ratio were related to IMT progression (P < 0.05). This prospective study demonstrated the LDL-C/HDL-C ratio is a better predictor of IMT progression than HDL-C or LDL-C alone

    Aging of the Vascular System and Neural Diseases.

    Get PDF
    Vertebrates have acquired complex high-order functions facilitated by the dispersion of vascular and neural networks to every corner of the body. Blood vessels deliver oxygen and nutrients to all cells and provide essential transport systems for removing waste products. For these functions, tissue vascularization must be spatiotemporally appropriate. Recent studies revealed that blood vessels create a tissue-specific niche, thus attracting attention as biologically active sites for tissue development. Each capillary network is critical for maintaining proper brain function because age-related and disease-related impairment of cognitive function is associated with the loss or diminishment of brain capillaries. This review article highlights how structural and functional alterations in the brain vessels may change with age and neurogenerative diseases. Capillaries are also responsible for filtering toxic byproducts, providing an appropriate vascular environment for neuronal function. Accumulation of amyloid β is a key event in Alzheimer’s disease pathogenesis. Recent studies have focused on associations reported between Alzheimer’s disease and vascular aging. Furthermore, the glymphatic system and meningeal lymphatic systems contribute to a functional unit for clearance of amyloid β from the brain from the central nervous system into the cervical lymph nodes. This review article will also focus on recent advances in stem cell therapies that aim at repopulation or regeneration of a degenerating vascular system for neural diseases

    Suppression of Sproutys Has a Therapeutic Effect for a Mouse Model of Ischemia by Enhancing Angiogenesis

    Get PDF
    Sprouty proteins (Sproutys) inhibit receptor tyrosine kinase signaling and control various aspects of branching morphogenesis. In this study, we examined the physiological function of Sproutys in angiogenesis, using gene targeting and short-hairpin RNA (shRNA) knockdown strategies. Sprouty2 and Sprouty4 double knockout (KO) (DKO) mice were embryonic-lethal around E12.5 due to cardiovascular defects. The number of peripheral blood vessels, but not that of lymphatic vessels, was increased in Sprouty4 KO mice compared with wild-type (WT) mice. Sprouty4 KO mice were more resistant to hind limb ischemia and soft tissue ischemia than WT mice were, because Sprouty4 deficiency causes accelerated neovascularization. Moreover, suppression of Sprouty2 and Sprouty4 expression in vivo by shRNA targeting accelerated angiogenesis and has a therapeutic effect in a mouse model of hind limb ischemia. These data suggest that Sproutys are physiologically important negative regulators of angiogenesis in vivo and novel therapeutic targets for treating peripheral ischemic diseases

    Akira Takeshita, MD, PhD

    No full text
    corecore