6 research outputs found
High temperature superconductivity (Tc onset at 34K) in the high pressure orthorhombic phase of FeSe
We have studied the structural and superconducting properties of tetragonal
FeSe under pressures up to 26GPa using synchrotron radiation and diamond anvil
cells. The bulk modulus of the tetragonal phase is 28.5(3)GPa, much smaller
than the rest of Fe based superconductors. At 12GPa we observe a phase
transition from the tetragonal to an orthorhombic symmetry. The high pressure
orthorhombic phase has a higher Tc reaching 34K at 22GPa.Comment: 15 pages, 4 figure
Interplay between magnetism and superconductivity and appearance of a second superconducting transition in alpha-FeSe at high pressure
We synthesized tetragonal alpha-FeSe by melting a powder mixture of iron and
selenium at high pressure. Subsequent annealing at normal pressure results in
removing traces of hexagonal beta- FeSe, formation of a rather sharp transition
to superconducting state at Tc ~ 7 K, and the appearance of a magnetic
transition near Tm = 120 K. Resistivity and ac-susceptibility were measured on
the annealed sample at hydrostatic pressure up to 4.5 GPa. A magnetic
transition visible in ac-susceptibility shifts down under pressure and the
resistive anomaly typical for a spin density wave (SDW) antiferromagnetic
transition develops near the susceptibility anomaly. Tc determined by the
appearance of a diamagnetic response in susceptibility, increases linearly
under pressure at a rate dTc/dP = 3.5 K/GPa. Below 1.5 GPa, the resistive
superconducting transition is sharp; the width of transition does not change
with pressure; and, Tc determined by a peak in drho/dT increases at a rate ~
3.5 K/GPa. At higher pressure, a giant broadening of the resistive transition
develops. This effect cannot be explained by possible pressure gradients in the
sample and is inherent to alpha-FeSe. The dependences drho(T)/dT show a
signature for a second peak above 3 GPa which is indicative of the appearance
of another superconducting state in alpha-FeSe at high pressure. We argue that
this second superconducting phase coexists with SDW antiferromagnetism in a
partial volume fraction and originates from pairing of charge carriers from
other sheets of the Fermi surface
Superconducting and normal phases of FeSe single crystals at high pressure
We report on the synthesis of superconducting single crystals of FeSe, and
their characterization by X-ray diffraction, magnetization and resistivity. We
have performed ac susceptibility measurements under high pressure in a
hydrostatic liquid argon medium up to 14 GPa and we find that TC increases up
to 33-36 K in all samples, but with slightly different pressure dependences on
different samples. Above 12 GPa no traces of superconductivity are found in any
sample. We have also performed a room temperature high pressure X-ray
diffraction study up to 12 GPa on a powder sample, and we find that between 8.5
GPa and 12 GPa, the tetragonal PbO structure undergoes a structural transition
to a hexagonal structure. This transition results in a volume decrease of about
16%, and is accompanied by the appearance of an intermediate, probably
orthorhombic phase