9 research outputs found

    The Interplay between Autophagy and Redox Signaling in Cardiovascular Diseases

    No full text
    Reactive oxygen and nitrogen species produced at low levels under normal cellular metabolism act as important signal molecules. However, at increased production, they cause damage associated with oxidative stress, which can lead to the development of many diseases, such as cardiovascular, metabolic, neurodegenerative, diabetes, and cancer. The defense systems used to maintain normal redox homeostasis plays an important role in cellular responses to oxidative stress. The key players here are Nrf2-regulated redox signaling and autophagy. A tight interface has been described between these two processes under stress conditions and their role in oxidative stress-induced diseases progression. In this review, we focus on the role of Nrf2 as a key player in redox regulation in cell response to oxidative stress. We also summarize the current knowledge about the autophagy regulation and the role of redox signaling in this process. In line with the focus of our review, we describe in more detail information about the interplay between Nrf2 and autophagy pathways in myocardium and the role of these processes in cardiovascular disease development

    Age-dependent redox status in the brain stem of NO-deficient hypertensive rats

    No full text
    Abstract Background The brain stem contains important nuclei that control cardiovascular function via the sympathetic nervous system (SNS), which is strongly influenced by nitric oxide. Its biological activity is also largely determined by oxygen free radicals. Despite many experimental studies, the role of AT1R-NAD(P)H oxidase-superoxide pathway in NO-deficiency is not yet sufficiently clarified. We determined changes in free radical signaling and antioxidant and detoxification response in the brain stem of young and adult Wistar rats during chronic administration of exogenous NO inhibitors. Methods Young (4 weeks) and adult (10 weeks) Wistar rats were treated with 7-nitroindazole (7-NI group, 10 mg/kg/day), a specific nNOS inhibitor, with NG-nitro-L-arginine-methyl ester (L-NAME group, 50 mg/kg/day), a nonspecific NOS inhibitor, and with drinking water (Control group) during 6 weeks. Systolic blood pressure was measured by non-invasive plethysmography. Expression of genes (AT1R, AT2R, p22phox, SOD and NOS isoforms, HO-1, MDR1a, housekeeper GAPDH) was identified by real-time PCR. NOS activity was detected by conversion of [3H]-L-arginine to [3H]-L-citrulline and SOD activity was measured using UV VIS spectroscopy. Results We observed a blood pressure elevation and decrease in NOS activity only after L-NAME application in both age groups. Gene expression of nNOS (youngs) and eNOS (adults) in the brain stem decreased after both inhibitors. The radical signaling pathway triggered by AT1R and p22phox was elevated in L-NAME adults, but not in young rats. Moreover, L-NAME-induced NOS inhibition increased antioxidant response, as indicated by the observed elevation of mRNA SOD3, HO-1, AT2R and MDR1a in adult rats. 7-NI did not have a significant effect on AT1R-NADPH oxidase-superoxide pathway, yet it affected antioxidant response of mRNA expression of SOD1 and stimulated total activity of SOD in young rats and mRNA expression of AT2R in adult rats. Conclusion Our results show that chronic NOS inhibition by two different NOS inhibitors has age-dependent effect on radical signaling and antioxidant/detoxificant response in Wistar rats. While 7-NI had neuroprotective effect in the brain stem of young Wistar rats, L-NAME- induced NOS inhibition evoked activation of AT1R-NAD(P)H oxidase pathway in adult Wistar rats. Triggering of the radical pathway was followed by activation of protective compensation mechanism at the gene expression level

    Quercetin Improves Postischemic Recovery of Heart Function in Doxorubicin-Treated Rats and Prevents Doxorubicin-Induced Matrix Metalloproteinase-2 Activation and Apoptosis Induction

    No full text
    Quercetin (QCT) is flavonoid that possesses various biological functions including anti-oxidative and radical-scavenging activities. Moreover, QCT exerts some preventive actions in treatment of cardiovascular diseases. The aim of present study was to explore effects of prolonged administration of QCT on changes induced by repeated application of doxorubicin (DOX) in rat hearts. We focused on the ultrastructure of myocardium, matrix metalloproteinases (MMPs), biometric parameters, and apoptosis induction. Our aim was also to examine effects of QCT on ischemic tolerance in hearts exposed to chronic effects of DOX, and to determine possible mechanisms underlying effects of QCT. Our results showed that QCT prevented several negative chronic effects of DOX: (I) reversed DOX-induced blood pressure increase; (II) mediated improvement of deleterious effects of DOX on ultrastructure of left ventricle; (III) prevented DOX-induced effects on tissue MMP-2 activation; and (iv) reversed effects of DOX on apoptosis induction and superoxide dismutase inhibition. Moreover, we showed that rat hearts exposed to effects of QCT were more resistant to ischemia/reperfusion injury. Effects of QCT on modulation of ischemic tolerance were linked to Akt kinase activation and connexin-43 up-regulation. Taken together, these results demonstrate that prolonged treatment with QCT prevented negative chronic effects of DOX on blood pressure, cellular damage, MMP-2 activation, and apoptosis induction. Moreover, QCT influenced myocardial responses to acute ischemic stress. These facts bring new insights into mechanisms of QCT action on rat hearts exposed to the chronic effects of DOX

    The Effects of New Alibernet Red Wine Extract on Nitric Oxide and Reactive Oxygen Species Production in Spontaneously Hypertensive Rats

    No full text
    We aimed to perform a chemical analysis of both Alibernet red wine and an alcohol-free Alibernet red wine extract (AWE) and to investigate the effects of AWE on nitric oxide and reactive oxygen species production as well as blood pressure development in normotensive Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHRs). Total antioxidant capacity together with total phenolic and selected mineral content was measured in wine and AWE. Young 6-week-old male WKY and SHR were treated with AWE (24,2 mg/kg/day) for 3 weeks. Total NOS and SOD activities, eNOS and SOD1 protein expressions, and superoxide production were determined in the tissues. Both antioxidant capacity and phenolic content were significantly higher in AWE compared to wine. The AWE increased NOS activity in the left ventricle, aorta, and kidney of SHR, while it did not change NOS activity in WKY rats. Similarly, increased SOD activity in the plasma and left ventricle was observed in SHR only. There were no changes in eNOS and SOD1 expressions. In conclusion, phenolics and minerals included in AWE may contribute directly to increased NOS and SOD activities of SHR. Nevertheless, 3 weeks of AWE treatment failed to affect blood pressure of SHR

    Effects of PPARγ Agonist Pioglitazone on Redox-Sensitive Cellular Signaling in Young Spontaneously Hypertensive Rats

    Get PDF
    PPARγ receptor plays an important role in oxidative stress response. Its agonists can influence vascular contractility in experimental hypertension. Our study was focused on the effects of a PPARγ agonist pioglitazone (PIO) on blood pressure regulation, vasoactivity of vessels, and redox-sensitive signaling at the central (brainstem, BS) and peripheral (left ventricle, LV) levels in young prehypertensive rats. 5-week-old SHR were treated either with PIO (10 mg/kg/day, 2 weeks) or with saline using gastric gavage. Administration of PIO significantly slowed down blood pressure increase and improved lipid profile and aortic relaxation after insulin stimulation. A significant increase in PPARγ expression was found only in BS, not in LV. PIO treatment did not influence NOS changes, but had tissue-dependent effect on SOD regulation and increased SOD activity, observed in LV. The treatment with PIO differentially affected also the levels of other intracellular signaling components: Akt kinase increased in the the BS, while β-catenin level was down-regulated in the BS and up-regulated in the LV. We found that the lowering of blood pressure in young SHR can be connected with insulin sensitivity of vessels and that β-catenin and SOD levels are important agents mediating PIO effects in the BS and LV.ISSN:1687-4757ISSN:1687-476
    corecore