764 research outputs found

    Optimization of symbolic evaluation of helicity amplitudes

    Get PDF
    We present a method for symbolic evaluation of Feynman amplitudes. We construct special polarization basis for spinor particles which produces compact expressions for tensor products of basis spinors.Comment: Standard LaTeX, 6 pages. To appear in the proceedings of the Seventh International Workshop on Advanced Computing and Analysis Technics in Physics Research (ACAT2000, Fermilab, October 16-20, 2000

    The effect of temperature and pressure on the distribution of iron group elements between metal and olivine phases in the process of differentiation of protoplanetary material

    Get PDF
    The distribution patterns of Ni, Co, Mn, and Cr were studied in olivines of various origins: from meteorites (chondrites, achondrites, pallasites), which are likely analogs of the protoplanetary material, to peridotite inclusions in kimberlite pipes, which are analogs of mantle material. According to X-ray microanalysis data, nickel is concentrated in peridotite olivines, while manganese is concentrated in meteoritic olivines. The maximum chromium content was found in ureilites, which were formed under reducing conditions. Experiments at pressures of 20 to 70 kbar and temperatures of 1100 to 2000 C have shown that in a mixture of olivine and Ni metal or NiO, nickel enters the silicate phase, displacing Fe into the metallic phase. Equilibrium temperatures were estimated from the Fe, Ni distribution coefficients between the metal and olivine: 1500 K for pallasites, 1600 K for olivine-bronzite H6 chondrites, 1200 K for olivine-hypersthene L6, 900 K for LL6, and 1900 K for ureilites (at P = 1 atm). The equilibrium conditions of peridotites are close to T = 1800 K and P over 100 kbar. It is concluded that there is a sharp difference between the conditions of differentiation of the protoplanetary material at the time meteorites were formed and the conditions of differentiation of the planets into concentric layers

    Self Field Measurements by Hall Sensors on the SeCRETS Long Sample CICCs in SULTAN

    Get PDF
    The aim of this work is to determine the existence and degree of the current unbalance of two types of cable-in-conduit conductors (CICC) of the SeCRETS long sample experiment, and its influence on the conductors' performance. The self-field measurements are performed by using six sets of annular Hall sensors, each containing six sensors, and two linear arrays with ten sensors. The change of the self-field is associated with the redistribution of the transport current between the strands inside the conductor during and after a ramp of current, due to changes of the applied magnetic field or temperature of the conductor. During the DC, AC losses and stability tests, the signals from the Hall sensors were recorded. In DC tests, a clear change of the self-field pattern is observed in the high field region when either current or temperature approached their critical (I/sub cs/ and T/sub cs/) values. No change in the self-field pattern is observed in the experiments with pulsed fields. The method requires improvements for a reasonable quantitative assessment of the current unbalance in the conductor

    Self field measurements by Hall sensors on the SeCRETS short sample CICC's subjected to cyclic load

    Get PDF
    An imbalance in the transport current among the strands of a Cable-in-Conduit conductors (CICC) can be associated with the change of their performance. In order to understand and improve the performance of CICC's, it is essential to study the current imbalance. This paper focuses on the study of the current imbalance in two short samples of the SeCRETS (Segregated Copper Ratio Experiment on Transient Stability) conductors subjected to a cyclic load in the SULTAN facility. The self field around the conductors was measured on four locations by 32 miniature Hall sensors for a reconstruction of the current distribution. The results of the self field measurements in the DC tests are presented and discussed

    Mapping EK Draconis with PEPSI - Possible evidence for starspot penumbrae

    Full text link
    We present the first temperature surface map of EK Dra from very-high-resolution spectra obtained with the Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope. Changes in spectral line profiles are inverted to a stellar surface temperature map using our iiMap code. The long-term photometric record is employed to compare our map with previously published maps. Four cool spots were reconstructed, but no polar spot was seen. The temperature difference to the photosphere of the spots is between 990 and 280K. Two spots are reconstructed with a typical solar morphology with an umbra and a penumbra. For the one isolated and relatively round spot (A), we determine an umbral temperature of 990K and a penumbral temperature of 180K below photospheric temperature. The umbra to photosphere intensity ratio of EK Dra is approximately only half of that of a comparison sunspot. A test inversion from degraded line profiles showed that the higher spectral resolution of PEPSI reconstructs the surface with a temperature difference that is on average 10% higher than before and with smaller surface areas by 10-20%. PEPSI is therefore better suited to detecting and characterising temperature inhomogeneities. With ten more years of photometry, we also refine the spot cycle period of EK Dra to 8.9±\pm0.2 years with a continuing long-term fading trend. The temperature morphology of spot A so far appears to show the best evidence for the existence of a solar-like penumbra for a starspot. We emphasise that it is more the non-capture of the true umbral contrast rather than the detection of the weak penumbra that is the limiting factor. The relatively small line broadening of EK Dra, together with the only moderately high spectral resolutions previously available, appear to be the main contributors to the lower-than-expected spot contrasts when comparing to the Sun.Comment: Accepted for A&
    • …
    corecore