6 research outputs found

    P-glycoprotein overactivity in epileptogenic developmental lesions measured in vivo using (R)-[¹¹C]verapamil PET

    Get PDF
    OBJECTIVE: Overexpression of the drug transporter P-glycoprotein (P-gp) is thought to be involved in drug-resistance in epilepsy by extrusion of antiepileptic drugs (AEDs). We used positron emission tomography (PET) and the P-gp substrate radiotracer (R)-[11 C]verapamil (VPM) together with the third-generation P-gp inhibitor tariquidar (TQD) to evaluate P-gp function in individuals with drug-resistant epileptogenic developmental lesions. METHODS: Twelve healthy controls (7 male, median age 45, range 35-55 years), and two patients with epileptogenic developmental lesions (2 male, aged 24 and 62 years) underwent VPM-PET scans before and 60 minutes after a 30-minute infusion of 2 and 3 mg/kg TQD. The influx rate constant, VPM-K1 , was estimated from the first 10 minutes of dynamic data using a single-tissue compartment model with a VPM plasma input function. Statistical parametric mapping (SPM) analysis was used to compare individual patients with the healthy controls. RESULTS: At baseline, SPM voxel-based analysis revealed significantly lower uptake of VPM corresponding to the area of the epileptogenic developmental lesion compared to 12 healthy controls (P < .048). This was accentuated following P-gp inhibition with TQD. After TQD, the uptake of VPM was significantly lower in the area of the epileptogenic developmental lesion compared to controls (P < .002). SIGNIFICANCE: This study provides further evidence of P-gp overactivity in patients with drug-resistant epilepsy, irrespective of the type of lesion. Identifying P-gp overactivity as an underlying contributor to drug-resistance in individual patients will enable novel treatment strategies aimed at overcoming or reversing P-gp overactivity

    Risk of Seizure Recurrence Due to Autoimmune Encephalitis With NMDAR, LGI1, CASPR2, and GABABR Antibodies: Implications for Return to Driving

    Get PDF
    Rada A, Hagemann A, Aaberg Poulsen C, et al. Risk of Seizure Recurrence Due to Autoimmune Encephalitis With NMDAR, LGI1, CASPR2, and GABABR Antibodies: Implications for Return to Driving. Neurology: Neuroimmunology &amp; Neuroinflammation . 2024;11(4): e200225.BACKGROUND AND OBJECTIVES: Patients with ongoing seizures are usually not allowed to drive. The prognosis for seizure freedom is favorable in patients with autoimmune encephalitis (AIE) with antibodies against NMDA receptor (NMDAR), leucine-rich glioma-inactivated 1 (LGI1), contactin-associated protein-like 2 (CASPR2), and the gamma-aminobutyric-acid B receptor (GABABR). We hypothesized that after a seizure-free period of 3 months, patients with AIE have a seizure recurrence risk of <20% during the subsequent 12 months. This would render them eligible for noncommercial driving according to driving regulations in several countries.; METHODS: This retrospective multicenter cohort study analyzed follow-up data from patients aged 15 years or older with seizures resulting from NMDAR-, LGI1-, CASPR2-, or GABABR-AIE, who had been seizure-free for ≥3 months. We used Kaplan-Meier (KM) estimates for the seizure recurrence risk at 12 months for each antibody group and tested for the effects of potential covariates with regression models.; RESULTS: We included 383 patients with NMDAR-, 440 with LGI1-, 114 with CASPR2-, and 44 with GABABR-AIE from 14 international centers. After being seizure-free for 3 months after an initial seizure period, we calculated the probability of remaining seizure-free for another 12 months (KM estimate) as 0.89 (95% confidence interval [CI] 0.85-0.92) for NMDAR, 0.84 (CI 0.80-0.88) for LGI1, 0.82 (CI 0.75-0.90) for CASPR2, and 0.76 (CI 0.62-0.93) for GABABR.; DISCUSSION: Taking a <20% recurrence risk within 12 months as sufficient, patients with NMDAR-AIE and LGI1-AIE could be considered eligible for noncommercial driving after having been seizure-free for 3 months

    The construction of the L3 experiment

    Full text link
    The L3 experiment is one of the six large detectors designed for the new generation of electron-positron accelerators. It is the only detector that concentrates its efforts on limited goals of measuring electrons, muons and photons. By not attempting to identify hadrons, L3 has been able to provide an order of magnitude better resolution for electrons, muons and photons. Vertices and hadron jets are also studied. The construction of L3 has involved much state of the art technology in new principles of vertex detection and in new crystals for large scale electromagnetic shower detection and ultraprecise muon detection. This paper presents a summary of the construction of L3.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/28628/3/0000442.pd
    corecore