11 research outputs found

    Magnetic Dirac semimetal state of (Mn,Ge)Bi2_2Te4_4

    Full text link
    For quantum electronics, the possibility to finely tune the properties of magnetic topological insulators (TIs) is a key issue. We studied solid solutions between two isostructural Z2_2 TIs, magnetic MnBi2_2Te4_4 and nonmagnetic GeBi2_2Te4_4, with Z2_2 invariants of 1;000 and 1;001, respectively. For high-quality, large mixed crystals of Gex_xMn1−x_{1-x}Bi2_2Te4_4, we observed linear x-dependent magnetic properties, composition-independent pairwise exchange interactions along with an easy magnetization axis. The bulk band gap gradually decreases to zero for xx from 0 to 0.4, before reopening for x>0.6x>0.6, evidencing topological phase transitions (TPTs) between topologically nontrivial phases and the semimetal state. The TPTs are driven purely by the variation of orbital contributions. By tracing the x-dependent 6p6p contribution to the states near the fundamental gap, the effective spin-orbit coupling variation is extracted. As xx varies, the maximum of this contribution switches from the valence to the conduction band, thereby driving two TPTs. The gapless state observed at x=0.42x=0.42 closely resembles a Dirac semimetal above the Neel temperature and shows a magnetic gap below, which is clearly visible in raw photoemission data. The observed behavior of the Gex_xMn1−x_{1-x}Bi2_2Te4_4 system thereby demonstrates an ability to precisely control topological and magnetic properties of TIs

    Site- and spin-dependent coupling at the highly ordered h-BN/Co(0001) interface

    Get PDF
    Using photoelectron diffraction and spectroscopy, we explore the structural and electronic properties of the hexagonal boron nitride (h-BN) monolayer epitaxially grown on the Co(0001) surface. Perfect matching of the lattice parameters allows formation of a well-defined interface where the B atoms occupy the hollow sites while the N atoms are located above the Co atoms. The corrugation of the h-BN monolayer and its distance from the substrate were determined by means of R-factor analysis. The obtained results are in perfect agreement with the density functional theory (DFT) predictions. The electronic structure of the interface is characterized by a significant mixing of the h-BN and Co states. Such hybridized states appear in the h-BN band gap. This allows to obtain atomically resolved scanning tunneling microscopy (STM) images from the formally insulating 2D material being in contact with ferromagnetic metal. The STM images reveal mainly the nitrogen sublattice due to a dominating contribution of nitrogen orbitals to the electronic states at the Fermi level. We believe that the high quality, well-defined structure and interesting electronic properties make the h-BN/Co(0001) interface suitable for spintronic applications.L.V.Ya. acknowledges the RSF (Grant No. 16-42-01093). A.V.T., V.O.S., K.A.B., O.Yu.V., and D.Yu.U. acknowledge St. Petersburg State University for research Grant No. 11.65.42.2017. M.V.K. and I.I.O. acknowledge the RFBR (Grant No. 16-29-06410). C.L. acknowledges the DFG (Grant Nos. LA655-17/1 and LA655-19/1).Peer reviewe

    Phosphazene-Containing Epoxy Resins Based on Bisphenol F with Enhanced Heat Resistance and Mechanical Properties: Synthesis and Properties

    No full text
    Organophosphazenes are of interest due to the combination of increased mechanical and thermal properties of polymer materials obtained with their use, however, they are characterized by a complex multi-stage synthesis. Moreover, the high viscosity of phosphazene-containing epoxy resins (PhER) makes their processing difficult. To simplify the synthesis of PhER, a one-step method was developed, and bisphenol F was chosen, which also provided a decrease in viscosity. In the current study, PhER were formed by a one-stage interaction of hexachlorocyclotriphosphazene (HCP) with bisphenol F isomers and epichlorohydrin in the presence of alkali, which was a mixture of epoxycyclophosphazenes (ECPh) with a functionality from 1 to 4 according to the results of MALDI-TOF analysis. Conventional epoxy resins based on bisphenol F, also formed during the process, showed high mechanical properties and glass transition temperature, and the reactivity of the obtained resins is similar to the base epoxy resins based on bisphenols A and F. Cured PhER had higher or the same mechanical properties compared to base epoxy resins based on bisphenol A and F, and a glass transition temperature comparable to base epoxy resins based on bisphenol F: glass transition temperature (Tg) up to 174.5 °C, tensile strength up to 74.5 MPa, tensile modulus up to 2050 MPa, tensile elongation at break up to 6.22%, flexural strength up to 146.6 MPa, flexural modulus up to 3630 MPa, flexural elongation at break up to 9.15%, and Izod impact strength up to 4.01 kJ/m2. Analysis of the composition of the obtained PhER was carried out by 1H and 31P NMR spectroscopy, MALDI-TOF mass spectrometry, X-ray fluorescence elemental analysis, and contained up to 3.9% phosphorus and from 1.3% to 4.2% chlorine. The temperature profile of the viscosity of the resulting epoxy resins was determined, and the viscosity at 25 °C ranged from 20,000 to 450,000 Pa·s, depending on the ratio of reagents. The resins studied in this work can be cured with conventional curing agents and, with a low content of the phosphazene fraction, can act as modifiers for traditional epoxy resins, being compatible with them, to increase impact strength and elasticity while maintaining the rest of the main mechanical and processing properties, and can be used as a resin component for composite materials, adhesives, and paints

    >

    No full text

    Asymmetric Interfaces in Epitaxial Off-Stoichiometric Fe3+xSi1−x/Ge/Fe3+xSi1−x Hybrid Structures: Effect on Magnetic and Electric Transport Properties

    No full text
    Three-layer iron-rich Fe3+xSi1−x/Ge/Fe3+xSi1−x (0.2 < x < 0.64) heterostructures on a Si(111) surface with Ge thicknesses of 4 nm and 7 nm were grown by molecular beam epitaxy. Systematic studies of the structural and morphological properties of the synthesized samples have shown that an increase in the Ge thickness causes a prolonged atomic diffusion through the interfaces, which significantly increases the lattice misfits in the Ge/Fe3+xSi1−x heterosystem due to the incorporation of Ge atoms into the Fe3+xSi1−x bottom layer. The resultant lowering of the total free energy caused by the development of the surface roughness results in a transition from an epitaxial to a polycrystalline growth of the upper Fe3+xSi1−x. The average lattice distortion and residual stress of the upper Fe3+xSi1−x were determined by electron diffraction and theoretical calculations to be equivalent to 0.2 GPa for the upper epitaxial layer with a volume misfit of −0.63% compared with a undistorted counterpart. The volume misfit follows the resultant interatomic misfit of |0.42|% with the bottom Ge layer, independently determined by atomic force microscopy. The variation in structural order and morphology significantly changes the magnetic properties of the upper Fe3+xSi1−x layer and leads to a subtle effect on the transport properties of the Ge layer. Both hysteresis loops and FMR spectra differ for the structures with 4 nm and 7 nm Ge layers. The FMR spectra exhibit two distinct absorption lines corresponding to two layers of ferromagnetic Fe3+xSi1−x films. At the same time, a third FMR line appears in the sample with the thicker Ge. The angular dependences of the resonance field of the FMR spectra measured in the plane of the film have a pronounced easy-axis type anisotropy, as well as an anisotropy corresponding to the cubic crystal symmetry of Fe3+xSi1−x, which implies the epitaxial orientation relationship of Fe3+xSi1−x (111)[0−11] || Ge(111)[1−10] || Fe3+xSi1−x (111)[0−11] || Si(111)[1−10]. Calculated from ferromagnetic resonance (FMR) data saturation magnetization exceeds 1000 kA/m. The temperature dependence of the electrical resistivity of a Ge layer with thicknesses of 4 nm and 7 nm is of semiconducting type, which is, however, determined by different transport mechanisms

    Growth Process, Structure and Electronic Properties of Cr<sub>2</sub>GeC and Cr<sub>2-x</sub>Mn<sub>x</sub>GeC Thin Films Prepared by Magnetron Sputtering

    No full text
    The growth and phase formation features, along with the influence of structure and morphology on the electronic, optical, and transport properties of Cr2GeC and Cr2-xMnxGeC MAX phase thin films synthesized by magnetron sputtering technique, were studied. It was found that the Cr:Ge:C atomic ratios most likely play the main role in the formation of a thin film of the MAX phase. A slight excess of carbon and manganese doping significantly improved the phase composition of the films. Cr2GeC films with a thicknesses exceeding 40 nm consisted of crystallites with well-developed facets, exhibiting metallic optical and transport properties. The hopping conduction observed in the Cr2-xMnxGeC film could be attributed to the columnar form of crystallites. Calculations based on a two-band model indicated high carrier concentrations N, P and mobility μ in the best-synthesized Cr2GeC film, suggesting transport properties close to single crystal material. The findings of this study can be utilized to enhance the growth technology of MAX phase thin films

    Origin of Giant Rashba Effect in Graphene on Pt/SiC

    No full text
    Intercalation of noble metals can produce giant Rashba-type spin–orbit splittings in graphene. The spin–orbit splitting of more than 100 meV has yet to be achieved in graphene on metal or semiconductor substrates. Here, we report the p-type graphene obtained by Pt intercalation of zero-layer graphene on SiC substrate. The spin splitting of ∼200 meV was observed at a wide range of binding energies. Comparing the results of theoretical studies of different models with the experimental ones measured by spin-ARPES, XPS and STM methods, we concluded that inducing giant spin–orbit splitting requires not only a relatively close distance between graphene and Pt layer but also the presence of graphene corrugation caused by a non-flat Pt layer. This makes it possible to find a compromise between strong hybridization and increased spin–orbit interaction. In our case, the Pt submonolayer possesses nanometer-scale lateral ordering under graphene
    corecore