4 research outputs found

    Molecular alliance of Lymantria dispar multiple nucleopolyhedrovirus and a short unmodified antisense oligonucleotide of its anti-apoptotic IAP-3 gene: A novel approach for gypsy moth control

    Get PDF
    Baculovirus IAP (inhibitor-of-apoptosis) genes originated by capture of host genes. Unmodified short antisense DNA oligonucleotides (oligoDNAs) from baculovirus IAP genes can down-regulate specific gene expression profiles in both baculovirus-free and baculovirus-infected insects. In this study, gypsy moth (Lymantria dispar) larvae infected with multiple nucleopolyhedrovirus (LdMNPV), and LdMNPV-free larvae, were treated with oligoDNA antisense to the RING (really interesting new gene) domain of the LdMNPV IAP-3 gene. The results with respect to insect mortality, biomass accumulation, histological studies, RT-PCR, and analysis of DNA apoptotic fragmentation suggest that oligoRING induced increased apoptotic processes in both LdMNPV-free and LdMNPV-infected insect cells, but were more pronounced in the latter. These data open up possibilities for promising new routes of insect pest control using antisense phosphodiester DNA oligonucleotides

    Molecular Alliance of Lymantria dispar Multiple Nucleopolyhedrovirus and a Short Unmodified Antisense Oligonucleotide of Its Anti-Apoptotic IAP-3 Gene: A Novel Approach for Gypsy Moth Control

    Get PDF
    Baculovirus IAP (inhibitor-of-apoptosis) genes originated by capture of host genes. Unmodified short antisense DNA oligonucleotides (oligoDNAs) from baculovirus IAP genes can down-regulate specific gene expression profiles in both baculovirus-free and baculovirus-infected insects. In this study, gypsy moth (Lymantria dispar) larvae infected with multiple nucleopolyhedrovirus (LdMNPV), and LdMNPV-free larvae, were treated with oligoDNA antisense to the RING (really interesting new gene) domain of the LdMNPV IAP-3 gene. The results with respect to insect mortality, biomass accumulation, histological studies, RT-PCR, and analysis of DNA apoptotic fragmentation suggest that oligoRING induced increased apoptotic processes in both LdMNPV-free and LdMNPV-infected insect cells, but were more pronounced in the latter. These data open up possibilities for promising new routes of insect pest control using antisense phosphodiester DNA oligonucleotides

    Gas-Transport and the Dielectric Properties of Metathesis Polymer from the Ester of exo-5-Norbornenecarboxylic Acid and 1,1′-Bi-2-naphthol

    No full text
    Polymers from norbornenes are of interest for applications in opto- and microelectronic (low dielectric materials, photoresists, OLEDs). Norbornenes with ester motifs are among the most readily available norbornene derivatives. However, little is known about dielectric properties and the gas-transport of polynorbornenes from such monomers. Herein, we synthesized a new metathesis polymer from exo-5-norbornenecarboxylic acid and 1,1′-bi-2-naphthol. The designed monomer was obtained via a two-step procedure in a good yield. This norbornene derivative with a rigid and a bulky binaphthyl group was successfully polymerized over the 1st generation Grubbs catalyst, affording high-molecular-weight products (Mw ≤ 1.5·106) in yields of 94–98%. The polymer is amorphous and glassy (Tg = 161 °C), and it shows good thermal stability. Unlike most, polyNBi is a classic low-permeable glassy polymer. The selectivity of polyNBi was higher than that of polyNB. Being less permeable than polyNB, polyNBi unexpectedly showed a lower value of dielectric permittivity (2.7 for polyNBi vs. 5.0 for polyNB). Therefore, the molecular design of polynorbornenes has great potential to obtain polymers with desired properties in a wide range of required characteristics. Further tuning of the gas separation efficiency can be achieved by attaching an appropriate substituent to the ester and aryl group

    Advances in the Understanding of Skin Cancer: Ultraviolet Radiation, Mutations, and Antisense Oligonucleotides as Anticancer Drugs

    No full text
    Skin cancer has always been and remains the leader among all tumors in terms of occurrence. One of the main factors responsible for skin cancer, natural and artificial UV radiation, causes the mutations that transform healthy cells into cancer cells. These mutations inactivate apoptosis, an event required to avoid the malignant transformation of healthy cells. Among these deadliest of cancers, melanoma and its ‘younger sister’, Merkel cell carcinoma, are the most lethal. The heavy toll of skin cancers stems from their rapid progression and the fact that they metastasize easily. Added to this is the difficulty in determining reliable margins when excising tumors and the lack of effective chemotherapy. Possibly the biggest problem posed by skin cancer is reliably detecting the extent to which cancer cells have spread throughout the body. The initial tumor is visible and can be removed, whereas metastases are invisible to the naked eye and much harder to eliminate. In our opinion, antisense oligonucleotides, which can be used in the form of targeted ointments, provide real hope as a treatment that will eliminate cancer cells near the tumor focus both before and after surgery
    corecore