15 research outputs found
Efficiency of Promoters of Human Genes <i>FAP</i> and <i>CTGF</i> at Organism Level in a <i>Danio rerio</i> Model
The identification of tissue-specific promoters for gene therapeutic constructs is one of the aims of complex tumor therapy. The genes encoding the fibroblast activation protein (FAP) and the connective tissue growth factor (CTGF) can function in tumor-associated stromal cells but are practically inactive in normal adult cells. Accordingly, the promoters of these genes can be used to develop vectors targeted to the tumor microenvironment. However, the efficiency of these promoters within genetic constructs remains underexplored, particularly, at the organism level. Here, we used the model of Danio rerio embryos to study the efficiency of transient expression of marker genes under the control of promoters of the FAP, CTGF, and immediate early genes of Human cytomegalovirus (CMV). Within 96 h after the injection of vectors, the CTGF and CMV promoters provided similar equal efficiency of reporter protein accumulation. In the case of the FAP promoter, a high level of reporter protein accumulation was observed only in certain zebrafish individuals that were considered developmentally abnormal. Disturbed embryogenesis was the factor of changes in the exogenous FAP promoter function. The data obtained make a significant contribution to understanding the function of the human CTGF and FAP promoters within vectors to assess their potential in gene therapy
Individual Expression of Hepatitis A Virus 3C Protease Induces Ferroptosis in Human Cells In Vitro
Regulated cell death (RCD) is a fundamental process common to nearly all living beings and essential for the development and tissue homeostasis in animals and humans. A wide range of molecules can induce RCD, including a number of viral proteolytic enzymes. To date, numerous data indicate that picornaviral 3C proteases can induce RCD. In most reported cases, these proteases induce classical caspase-dependent apoptosis. In contrast, the human hepatitis A virus 3C protease (3Cpro) has recently been shown to cause caspase-independent cell death accompanied by previously undescribed features. Here, we expressed 3Cpro in HEK293, HeLa, and A549 human cell lines to characterize 3Cpro-induced cell death morphologically and biochemically using flow cytometry and fluorescence microscopy. We found that dead cells demonstrated necrosis-like morphological changes including permeabilization of the plasma membrane, loss of mitochondrial potential, as well as mitochondria and nuclei swelling. Additionally, we showed that 3Cpro-induced cell death was efficiently blocked by ferroptosis inhibitors and was accompanied by intense lipid peroxidation. Taken together, these results indicate that 3Cpro induces ferroptosis upon its individual expression in human cells. This is the first demonstration that a proteolytic enzyme can induce ferroptosis, the recently discovered and actively studied type of RCD
Functional efficiency of PCR vectors in vitro and at the organism level.
The functional efficiency of the expression cassettes integrated into a plasmid and a PCR- amplified fragment was comparatively analyzed after transient transfection in vitro or introduction into the developing embryo of Danio rerio. The cassettes contained the reporter genes, luciferase of Photinus pyralis (luc) or enhanced green fluorescent protein, under the control of the promoter of human cytomegalovirus immediate-early genes. In the in vitro system, the efficiency of the circular plasmid was 2.5 times higher than that of the PCR- amplified fragment. The effect of mutations in the expression cassette on the efficiency of the transgene expression in the PCR- amplified fragment was quantitatively evaluated. The mutations generated after 25 amplification cycles with Taq DNA polymerase decreased luciferase activity in transfected cells by 65-85%. Thus, mutations are the key factor of decreased functional efficiency of the PCR- amplified fragment relative to the circular plasmid in this experimental model, while other factors apparently have a lesser impact. At the organism level, no significant difference in the expression efficiency of the plasmid and PCR- amplified fragment has been revealed. Comparison of the vector efficiencies in in vivo and in vitro systems demonstrates that the level of luciferase in the D. rerio cell lysate, normalized to the molar concentration of the vector, is by three orders of magnitude higher than that after the cell transfection in vitro, which indicates that the quantitative data obtained for in vitro systems should not be directly extrapolated to the organism level
Alterations in gene expression of proprotein convertases in human lung cancer have a limited number of scenarios.
Proprotein convertases (PCs) is a protein family which includes nine highly specific subtilisin-like serine endopeptidases in mammals. The system of PCs is involved in carcinogenesis and levels of PC mRNAs alter in cancer, which suggests expression status of PCs as a possible marker for cancer typing and prognosis. The goal of this work was to assess the information value of expression profiling of PC genes. Quantitative polymerase chain reaction was used for the first time to analyze mRNA levels of all PC genes as well as matrix metalloproteinase genes MMP2 and MMP14, which are substrates of PCs, in 30 matched pairs of samples of human lung cancer tumor and adjacent tissues without pathology. Significant changes in the expression of PCs have been revealed in tumor tissues: increased FURIN mRNA level (p<0.00005) and decreased mRNA levels of PCSK2 (p<0.007), PCSK5 (p<0.0002), PCSK7 (p<0.002), PCSK9 (p<0.00008), and MBTPS1 (p<0.00004) as well as a tendency to increase in the level of PCSK1 mRNA. Four distinct groups of samples have been identified by cluster analysis of the expression patterns of PC genes in tumor vs. normal tissue. Three of these groups covering 80% of samples feature a strong elevation in the expression of a single gene in cancer: FURIN, PCSK1, or PCSK6. Thus, the changes in the expression of PC genes have a limited number of scenarios, which may reflect different pathways of tumor development and cryptic features of tumors. This finding allows to consider the mRNAs of PC genes as potentially important tumor markers
NMR structure of emfourin, a novel protein metalloprotease inhibitor: Insights into the mechanism of action
Emfourin (M4in) is a protein metalloprotease inhibitor recently discovered in the bacterium Serratia proteamaculans and the prototype of a new family of protein protease inhibitors with an unknown mechanism of action. Protealysin-like proteases (PLPs) of the thermolysin family are natural targets of emfourin-like inhibitors widespread in bacteria and known in archaea. The available data indicate the involvement of PLPs in interbacterial interaction as well as bacterial interaction with other organisms and likely in pathogenesis. Arguably, emfourin-like inhibitors participate in the regulation of bacterial pathogenesis by controlling PLP activity. Here, we determined the 3D structure of M4in using solution NMR spectroscopy. The obtained structure demonstrated no significant similarity to known protein structures. This structure was used to model the M4in–enzyme complex and the complex model was verified by small-angle X-ray scattering. Based on the model analysis, we propose a molecular mechanism for the inhibitor, which was confirmed by site-directed mutagenesis. We show that two spatially close flexible loop regions are critical for the inhibitor–protease interaction. One region includes aspartic acid forming a coordination bond with catalytic Zn2+ of the enzyme and the second region carries hydrophobic amino acids interacting with protease substrate binding sites. Such an active site structure corresponds to the noncanonical inhibition mechanism. This is the first demonstration of such a mechanism for protein inhibitors of thermolysin family metalloproteases, which puts forward M4in as a new basis for the development of antibacterial agents relying on selective inhibition of prominent factors of bacterial pathogenesis belonging to this family
Description of the specimens studied and heat map presentation of the ratio values of gene expression in tumor vs. adjacent tissues without histological pathology.
<p>SCC, squamous cell lung carcinoma; AdC, adenocarcinoma; AdC/SCC, both AdC and SCC cells were found in the tumor tissue; SCLC, small cell lung carcinoma; P, peripheral tumor location; C, central tumor location; Y, tumor with keratinization; N, tumor without keratinization; ‘-’, no data. The heat map is shown in log<sub>2</sub> scale. Gray cells indicate specimens with undetectable mRNA in both tumor and normal tissues.</p
Clustering of PC genes' expression data.
<p>Specimens numbering corresponds to <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0055752#pone-0055752-g001" target="_blank">Fig. 1</a>. The Ratio<sup>T/N</sup> values in the heat map were row-normalized and shown in linear scale. Gray cells indicate specimens with undetectable mRNA in both normal and cancer tissues. Branch length reflects the distance between the dendrogram nodes. The clusters found are marked as C1, C2, C3 and C4.</p
Gene designations and TaqMan Gene Expression Assays used in real-time PCR.
*<p>HGNC – HUGO Gene Nomenclature Committee (<a href="http://www.genenames.org" target="_blank">www.genenames.org</a>).</p