10 research outputs found

    Guided acoustic waves at the intersection of interfaces and surfaces

    No full text
    In numerical calculations, guided acoustic waves, localized in two spatial dimensions, have been shown to exist and their properties have been investigated in three different geometries, (i) a half-space consisting of two elastic media with a planar interface inclined to the common surface, (ii) a wedge made of two elastic media with a planar interface, and (iii) the free edge of an elastic layer between two quarter-spaces or two wedge-shaped pieces of a material with elastic properties and density differing from those of the intermediate layer. For the special case of Poisson media forming systems (i) and (ii), the existence ranges of these 1D guided waves in parameter space have been determined and found to strongly depend on the inclination angle between surface and interface in case (i) and the wedge angle in case (ii). In a system of type (ii) made of two materials with strong acoustic mismatch and in systems of type (iii), leaky waves have been found with a high degree of spatial localization of the associated displacements, although the two materials constituting these structures are isotropic. Both the fully guided and the leaky waves analyzed in this work could find applications in non-destructive evaluation of composite structures and should be accounted for in geophysical prospecting, for example. A critical comparison is presented of the two computational approaches employed, namely a semi-analytical finite element scheme and a method based on an expansion of the displacement field in a double series of special functions

    Surface acoustic waves confined to a soft layer between two stiff elastic quarter-spaces

    No full text
    Propagation of acoustic waves is considered in a system consisting of two stiff quarter-spaces connected by a planar soft layer. The two quarter-spaces and the layer form a half-space with a planar surface. In a numerical study, surface waves have been found and analyzed in this system with displacements that are localized not only at the surface, but also in the soft layer. In addition to the semi-analytical finite element method, an alternative approach based on an expansion of the displacement field in a double series of Laguerre functions and Legendre polynomials has been applied. It is shown that a number of branches of the mode spectrum can be interpreted and remarkably well described by perturbation theory, where the zero-order modes are the wedge waves guided at a rectangular edge of the stiff quarter-spaces or waves guided at the edge of a soft plate with rigid surfaces. For elastic moduli and densities corresponding to the material combination PMMA–silicone–PMMA, at least one of the branches in the dispersion relation of surface waves trapped in the soft layer exhibits a zero-group velocity point. Potential applications of these 1D guided surface waves in non-destructive evaluation are discussed

    Anomalous reflection and transmission of surface acoustic waves at a crystal edge via coupling to leaky wedge waves

    No full text
    Surface acoustic waves are propagated toward the edge of an anisotropic elastic medium (a silicon crystal), which supports leaky waves with a high degree of localization at the tip of the edge. At an angle of incidence corresponding to phase matching with this leaky wedge wave, a sharp peak in the reflection coefficient of the surface wave was found. This anomalous reflection is associated with efficient excitation of the leaky wedge wave. In laser ultrasound experiments, surface acoustic wave pulses were excited and their reflection from the edge of the sample and their partial conversion into leaky wedge wave pulses was observed by optical probe-beam deflection. The reflection scenario and the pulse shapes of the surface and wedge-localized guided waves, including the evolution of the acoustic pulse traveling along the edge, have been confirmed in detail by numerical simulations

    Backward Acoustic Waves in Piezoelectric Plates: Possible Application as Base for Liquid Sensors

    No full text
    Backward acoustic waves are characterized by oppositely directed phase and group velocities. These waves can exist in isotropic and piezoelectric plates. They can be detected using a set of interdigital transducers with different spatial periods located on the same piezoelectric substrate. In this paper, the effect of a nonviscous and nonconductive liquid on the characteristics of a first-order backward antisymmetric wave in a YX plate of lithium niobate is studied theoretically and experimentally. It is shown that the presence of liquid does not lead to the transformation or disappearance of this wave. It is shown that these waves are close to the cutoff frequency and are characterized by the presence of a point with zero group velocity. The design of a liquid sensor based on these waves is proposed

    Guided acoustic waves at periodically structured edges: Linear modes and nonlinear generation of Lamb and surface waves

    No full text
    Acoustic waves are investigated which are guided at the edge (apex line) of a wedge-shaped elastic body or at the edge of an elastic plate. The edges contain a periodic sequence of modifications, consisting either of indentations or inclusions with a different elastic material which gives rise to high acoustic mismatch. Dispersion relations are computed with the help of the finite element method. They exhibit zero-group velocity points on the dispersion branches of edge-localized acoustic modes. These special points also occur at Bloch-Floquet wavenumbers away from the Brillouin zone boundary. Deep indentations lead to flat branches corresponding to largely non-interacting, Einstein-oscillator like vibrations of the tongues between the grooves of the periodic structure. Due to the nonlinearity of the elastic media, quantified by their third-order elastic constants, an acoustic mode localized at a periodically modified edge generates a second harmonic which partly consists of surface and plate modes propagating into the elastic medium in the direction vertical to the edge. This acoustic radiation at the second-harmonic frequency is investigated for an elastic plate and a truncated sharp-angle wedge with periodic inclusions at their edges. Unlike nonlinear bulk wave generation by surface acoustic waves in an interdigital structure, surface and plate mode radiation by edge-localized modes can be visualized directly in laser-ultrasound experiments

    High-Frequency Vibration Analysis of Piezoelectric Array Sensor under Lateral-Field-Excitation Based on Crystals with 3 m Point Group

    No full text
    Based on Mindlin’s first-order plate theory, the high-frequency vibrations of piezoelectric bulk acoustic wave array sensors under lateral-field-excitation based on crystals with 3 m point group are analyzed, and the spectral-frequency relationships are solved, based on which, the optimal length–thickness ratio of the piezoelectric crystal plate is determined. Then, the dynamic capacitance diagram is obtained by a forced vibration analysis of the piezoelectric crystal plate. The resonant mode conforming to good energy trapping is further obtained. The frequency interferences between different resonator units are calculated, and the influences of the spacing between two resonant units on the frequency interference with different electrode widths and spacings are analyzed. Finally, the safe spacings between resonator units are obtained. As the electrode spacing value of the left unit increases, the safe spacing d0 between the two resonator units decreases, and the frequency interference curve tends to zero faster. When the electrode spacings of two resonator units are equal, the safe distance is largest, and the frequency interference curve tends to zero slowest. The theoretical results are verified further by finite element method. The analysis model of high frequency vibrations of strongly coupled piezoelectric bulk acoustic array device based on LiTaO3 crystals with 3 m point group proposed in this paper can provide reliable theoretical guidance for size optimization designs of strongly coupled piezoelectric array sensors under lateral-field-excitation

    Topological Valley Transport of Elastic Waves Based on Periodic Triangular-Lattices

    No full text
    Topological transports of elastic waves have attracted much attention because of their unique immunity to defects and backscattering-suppression ability. Periodic lattice structures are ideal carriers of elastic-wave transports due to their ability to manipulate elastic waves. Compared with honeycomb-lattice structures, the wave-guide-path designs of triangular-lattice structures have higher flexibility. In this paper, topological transports of elastic waves in the periodic triangular-lattice structure are explored. It is shown that differences between intra-coupling and inter-coupling radii can cause the destruction of the effective spatial inversion symmetry, which gives rise to the valley Hall phase transition and the forming of topological edge states. Utilizing valley Hall effect, topological transports of elastic waves traveling along linear and Z-shaped waveguides are realized with low scattering and immunity to defects. On this basis, the path-selection function of transports of elastic waves in periodic triangular-lattice structures is obtained. Topological valley Hall edge states of elastic waves in periodic triangular-lattice structures have a good application prospects in elastic-wave manipulations and communications

    The Peculiarities of the Acoustic Waves of Zero-Order Focusing in Lithium Niobate Plate

    No full text
    In this research, beam focusing in lithium niobate plate was studied for fundamental anti-symmetric (A0) and symmetric (S0) Lamb waves, and the shear-horizontal (SH0) wave of zero-order. Using the finite element method, appropriate configuration of the interdigital transducer with arc-like electrodes was modeled accounting for the anisotropy of the slowness curves and dispersion of the modes in the plate. Profiles of the focalized acoustic beams generated by the proposed transducer were theoretically analyzed. Based on the result of the analysis, relevant delay lines were fabricated and transfer functions (insertion loss) of the line were measured for SH0 wave in YX-lithium niobate plate. Using an electron scanning microscope, distribution of the electric fields of the same wave were visualized. The results of this study may be useful for hybrid devices and sensors combining nano and acoustoelectronic principles
    corecore